Implicit Jailbreak Attacks via Cross-Modal Information Concealment on Vision-Language Models
- URL: http://arxiv.org/abs/2505.16446v1
- Date: Thu, 22 May 2025 09:34:47 GMT
- Title: Implicit Jailbreak Attacks via Cross-Modal Information Concealment on Vision-Language Models
- Authors: Zhaoxin Wang, Handing Wang, Cong Tian, Yaochu Jin,
- Abstract summary: Previous jailbreak attacks often inject malicious instructions from text into less aligned modalities, such as vision.<n>We propose a novel implicit jailbreak framework termed IJA that stealthily embeds malicious instructions into images via at least significant bit steganography.<n>On commercial models like GPT-4o and Gemini-1.5 Pro, our method achieves attack success rates of over 90% using an average of only 3 queries.
- Score: 20.99874786089634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) enable powerful cross-modal reasoning capabilities. However, the expanded input space introduces new attack surfaces. Previous jailbreak attacks often inject malicious instructions from text into less aligned modalities, such as vision. As MLLMs increasingly incorporate cross-modal consistency and alignment mechanisms, such explicit attacks become easier to detect and block. In this work, we propose a novel implicit jailbreak framework termed IJA that stealthily embeds malicious instructions into images via least significant bit steganography and couples them with seemingly benign, image-related textual prompts. To further enhance attack effectiveness across diverse MLLMs, we incorporate adversarial suffixes generated by a surrogate model and introduce a template optimization module that iteratively refines both the prompt and embedding based on model feedback. On commercial models like GPT-4o and Gemini-1.5 Pro, our method achieves attack success rates of over 90% using an average of only 3 queries.
Related papers
- Con Instruction: Universal Jailbreaking of Multimodal Large Language Models via Non-Textual Modalities [76.9327488986162]
Existing attacks against multimodal language models (MLLMs) primarily communicate instructions through text accompanied by adversarial images.<n>We exploit the capabilities of MLLMs to interpret non-textual instructions, specifically, adversarial images or audio generated by our novel method, Con Instruction.<n>Our method achieves the highest attack success rates, reaching 81.3% and 86.6% on LLaVA-v1.5 (13B)
arXiv Detail & Related papers (2025-05-31T13:11:14Z) - Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning [34.73320827764541]
Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images.<n>Recent jailbreaking attack methods manually design prompts for the LLM to generate adversarial prompts.<n>We propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts.
arXiv Detail & Related papers (2025-03-23T08:40:39Z) - `Do as I say not as I do': A Semi-Automated Approach for Jailbreak Prompt Attack against Multimodal LLMs [33.49407213040455]
We introduce the first voice-based jailbreak attack against multimodal large language models (LLMs)<n>We propose a novel strategy, in which the disallowed prompt is flanked by benign, narrative-driven prompts.<n>We demonstrate that Flanking Attack is capable of manipulating state-of-the-art LLMs into generating misaligned and forbidden outputs.
arXiv Detail & Related papers (2025-02-02T10:05:08Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.<n>It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.<n>Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
This paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively.
In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts.
arXiv Detail & Related papers (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
This paper focuses on jailbreaking attacks against multi-modal large language models (MLLMs)
A maximum likelihood-based algorithm is proposed to find an emphimage Jailbreaking Prompt (imgJP)
Our approach exhibits strong model-transferability, as the generated imgJP can be transferred to jailbreak various models.
arXiv Detail & Related papers (2024-02-04T01:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.