AnchorFormer: Differentiable Anchor Attention for Efficient Vision Transformer
- URL: http://arxiv.org/abs/2505.16463v2
- Date: Sun, 25 May 2025 08:10:35 GMT
- Title: AnchorFormer: Differentiable Anchor Attention for Efficient Vision Transformer
- Authors: Jiquan Shan, Junxiao Wang, Lifeng Zhao, Liang Cai, Hongyuan Zhang, Ioannis Liritzis,
- Abstract summary: We introduce an anchor-based efficient vision transformer (AnchorFormer), which employs the anchor tokens to learn the pivotal information and accelerate the inference.<n>By representing the anchors with the neurons in a neural layer, we can differentiable learn these distributions and approximate global self-attention.<n>Experiments show the effectiveness of our AnchorFormer, achieving up to a 9.0% higher accuracy or 46.7% FLOPs reduction on ImageNet classification.
- Score: 13.945118817568366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, vision transformers (ViTs) have achieved excellent performance on vision tasks by measuring the global self-attention among the image patches. Given $n$ patches, they will have quadratic complexity such as $\mathcal{O}(n^2)$ and the time cost is high when splitting the input image with a small granularity. Meanwhile, the pivotal information is often randomly gathered in a few regions of an input image, some tokens may not be helpful for the downstream tasks. To handle this problem, we introduce an anchor-based efficient vision transformer (AnchorFormer), which employs the anchor tokens to learn the pivotal information and accelerate the inference. Firstly, by estimating the bipartite attention between the anchors and tokens, the complexity will be reduced from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$, where $m$ is an anchor number and $m < n$. Notably, by representing the anchors with the neurons in a neural layer, we can differentiable learn these distributions and approximate global self-attention through the Markov process. Moreover, we extend the proposed model to three downstream tasks including classification, detection, and segmentation. Extensive experiments show the effectiveness of our AnchorFormer, e.g., achieving up to a 9.0% higher accuracy or 46.7% FLOPs reduction on ImageNet classification, 81.3% higher mAP on COCO detection under comparable FLOPs, as compared to the current baselines.
Related papers
- FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models [16.818798800714177]
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens.<n>Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens.<n>We propose FlowCut, an information-flow-aware pruning framework, to mitigate the insufficiency of the current criterion.
arXiv Detail & Related papers (2025-05-26T05:54:48Z) - LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation [37.72775203647514]
This paper proposes to use learnable meta tokens to formulate sparse tokens, which effectively learn key information and improve inference speed.
By employing Dual Cross-Attention (DCA) in the early stages with dense visual tokens, we obtain the hierarchical architecture LeMeViT with various sizes.
Experimental results in classification and dense prediction tasks show that LeMeViT has a significant $1.7 times$ speedup, fewer parameters, and competitive performance compared to the baseline models.
arXiv Detail & Related papers (2024-05-16T03:26:06Z) - Multi-Scale And Token Mergence: Make Your ViT More Efficient [3.087140219508349]
Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain.
We propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens.
Our method achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
arXiv Detail & Related papers (2023-06-08T02:58:15Z) - Robustifying Token Attention for Vision Transformers [72.07710236246285]
Vision transformers (ViTs) still suffer from significant drops in accuracy in the presence of common corruptions.
We propose two techniques to make attention more stable through two general techniques.
First, our Token-aware Average Pooling (TAP) module encourages the local neighborhood of each token to take part in the attention mechanism.
Second, we force the output tokens to aggregate information from a diverse set of input tokens rather than focusing on just a few.
arXiv Detail & Related papers (2023-03-20T14:04:40Z) - Making Vision Transformers Efficient from A Token Sparsification View [26.42498120556985]
We propose a novel Semantic Token ViT (STViT) for efficient global and local vision transformers.
Our method can achieve competitive results compared to the original networks in object detection and instance segmentation, with over 30% FLOPs reduction for backbone.
In addition, we design a STViT-R(ecover) network to restore the detailed spatial information based on the STViT, making it work for downstream tasks.
arXiv Detail & Related papers (2023-03-15T15:12:36Z) - Vision Transformer with Super Token Sampling [93.70963123497327]
Vision transformer has achieved impressive performance for many vision tasks.
It may suffer from high redundancy in capturing local features for shallow layers.
Super tokens attempt to provide a semantically meaningful tessellation of visual content.
arXiv Detail & Related papers (2022-11-21T03:48:13Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs)
We identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies.
We propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token.
arXiv Detail & Related papers (2022-10-12T17:54:32Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Parameterization of Cross-Token Relations with Relative Positional
Encoding for Vision MLP [52.25478388220691]
Vision multi-layer perceptrons (MLPs) have shown promising performance in computer vision tasks.
They use token-mixing layers to capture cross-token interactions, as opposed to the multi-head self-attention mechanism used by Transformers.
We propose a new positional spacial gating unit (PoSGU) to efficiently encode the cross-token relations for token mixing.
arXiv Detail & Related papers (2022-07-15T04:18:06Z) - UniFormer: Unifying Convolution and Self-attention for Visual
Recognition [69.68907941116127]
Convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant frameworks in the past few years.
We propose a novel Unified transFormer (UniFormer) which seamlessly integrates the merits of convolution and self-attention in a concise transformer format.
Our UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification.
arXiv Detail & Related papers (2022-01-24T04:39:39Z) - KVT: k-NN Attention for Boosting Vision Transformers [44.189475770152185]
We propose a sparse attention scheme, dubbed k-NN attention, for boosting vision transformers.
The proposed k-NN attention naturally inherits the local bias of CNNs without introducing convolutional operations.
We verify, both theoretically and empirically, that $k$-NN attention is powerful in distilling noise from input tokens and in speeding up training.
arXiv Detail & Related papers (2021-05-28T06:49:10Z) - CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
Classification [17.709880544501758]
We propose a dual-branch transformer to combine image patches of different sizes to produce stronger image features.
Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity.
Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise.
arXiv Detail & Related papers (2021-03-27T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.