Detailed Evaluation of Modern Machine Learning Approaches for Optic Plastics Sorting
- URL: http://arxiv.org/abs/2505.16513v1
- Date: Thu, 22 May 2025 10:48:30 GMT
- Title: Detailed Evaluation of Modern Machine Learning Approaches for Optic Plastics Sorting
- Authors: Vaishali Maheshkar, Aadarsh Anantha Ramakrishnan, Charuvahan Adhivarahan, Karthik Dantu,
- Abstract summary: According to the EPA, only 25% of waste is recycled, and just 60% of U.S. municipalities offer curbside recycling.<n>Plastics fare worse, with a recycling rate of only 8%; an additional 16% is incinerated, while the remaining 76% ends up in landfills.<n>The low plastic recycling rate stems from contamination, poor economic incentives, and technical difficulties.
- Score: 4.647327901007882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: According to the EPA, only 25% of waste is recycled, and just 60% of U.S. municipalities offer curbside recycling. Plastics fare worse, with a recycling rate of only 8%; an additional 16% is incinerated, while the remaining 76% ends up in landfills. The low plastic recycling rate stems from contamination, poor economic incentives, and technical difficulties, making efficient recycling a challenge. To improve recovery, automated sorting plays a critical role. Companies like AMP Robotics and Greyparrot utilize optical systems for sorting, while Materials Recovery Facilities (MRFs) employ Near-Infrared (NIR) sensors to detect plastic types. Modern optical sorting uses advances in computer vision such as object recognition and instance segmentation, powered by machine learning. Two-stage detectors like Mask R-CNN use region proposals and classification with deep backbones like ResNet. Single-stage detectors like YOLO handle detection in one pass, trading some accuracy for speed. While such methods excel under ideal conditions with a large volume of labeled training data, challenges arise in realistic scenarios, emphasizing the need to further examine the efficacy of optic detection for automated sorting. In this study, we compiled novel datasets totaling 20,000+ images from varied sources. Using both public and custom machine learning pipelines, we assessed the capabilities and limitations of optical recognition for sorting. Grad-CAM, saliency maps, and confusion matrices were employed to interpret model behavior. We perform this analysis on our custom trained models from the compiled datasets. To conclude, our findings are that optic recognition methods have limited success in accurate sorting of real-world plastics at MRFs, primarily because they rely on physical properties such as color and shape.
Related papers
- Textile Analysis for Recycling Automation using Transfer Learning and Zero-Shot Foundation Models [6.932314083921248]
This paper investigates the use of standard RGB imagery, a cost-effective sensing modality, for key pre-processing tasks in an automated system.<n>We present computer vision components designed for a conveyor belt setup to perform (a) classification of four common textile types and (b) segmentation of non- textile features such as buttons and zippers.
arXiv Detail & Related papers (2025-06-06T22:49:53Z) - First Lessons Learned of an Artificial Intelligence Robotic System for Autonomous Coarse Waste Recycling Using Multispectral Imaging-Based Methods [0.0]
Two key aspects to automate the sorting process are object detection with material classification in mixed piles of waste, and autonomous control of hydraulic machinery.<n>To address these challenges, we propose a classification of materials with multispectral images of ultraviolet (UV), visual (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectrums.<n> Solution for autonomous control of hydraulic heavy machines for sorting of bulky waste is being investigated using cost-effective cameras and artificial intelligence-based controllers.
arXiv Detail & Related papers (2025-01-23T17:24:24Z) - MaskTerial: A Foundation Model for Automated 2D Material Flake Detection [48.73213960205105]
We present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes.<n>The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data.<n>We demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
arXiv Detail & Related papers (2024-12-12T15:01:39Z) - WasteGAN: Data Augmentation for Robotic Waste Sorting through Generative Adversarial Networks [7.775894876221921]
We introduce a data augmentation method based on a novel GAN architecture called wasteGAN.
The proposed method allows to increase the performance of semantic segmentation models, starting from a very limited bunch of labeled examples.
We then leverage the higher-quality segmentation masks predicted from models trained on the wasteGAN synthetic data to compute semantic-aware grasp poses.
arXiv Detail & Related papers (2024-09-25T15:04:21Z) - SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation [46.178512739789426]
We present SpectralWaste, the first dataset collected from an operational plastic waste sorting facility.
This dataset contains labels for several categories of objects that commonly appear in sorting plants.
We propose a pipeline employing different object segmentation architectures and evaluate the alternatives on our dataset.
arXiv Detail & Related papers (2024-03-26T18:39:38Z) - PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning [54.409634256153154]
In Reinforcement Learning (RL), enhancing sample efficiency is crucial.
In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction.
Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects.
arXiv Detail & Related papers (2023-06-19T06:14:51Z) - Classification of PS and ABS Black Plastics for WEEE Recycling
Applications [63.942632088208505]
This work is aimed at creating a system that can classify different types of plastics by using picture analysis, in particular, black plastics of the type Polystyrene (PS) and Acrylonitrile Butadiene Styrene (ABS)
A Convolutional Neural Network has been tested and retrained, obtaining a validation accuracy of 95%.
Using a separate test set, average accuracy goes down to 86.6%, but a further look at the results shows that the ABS type is correctly classified 100% of the time, so it is the PS type that accumulates all the errors.
arXiv Detail & Related papers (2021-10-20T12:47:18Z) - Towards artificially intelligent recycling Improving image processing
for waste classification [0.0]
IBM's Wastenet project aims to improve recycling by using artificial intelligence for waste classification.
This paper builds on this project through the use of transfer learning and data augmentation techniques.
Results show that these augmentation techniques further improve the test accuracy of the final model to 95.40%.
arXiv Detail & Related papers (2021-08-09T21:41:48Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
We present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste.
This dataset contains over1800fully segmented video frames collected from a real waste sorting plant.
We show that state-of-the-art segmentation methods struggle to correctly detect and classify target objects.
arXiv Detail & Related papers (2021-06-04T22:17:09Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.