Action2Dialogue: Generating Character-Centric Narratives from Scene-Level Prompts
- URL: http://arxiv.org/abs/2505.16819v1
- Date: Thu, 22 May 2025 15:54:42 GMT
- Title: Action2Dialogue: Generating Character-Centric Narratives from Scene-Level Prompts
- Authors: Taewon Kang, Ming C. Lin,
- Abstract summary: We present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue.<n>Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior.<n>We render each utterance as expressive, character-consistent speech, resulting in fully-voiced video narratives.
- Score: 20.281732318265483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in scene-based video generation have enabled systems to synthesize coherent visual narratives from structured prompts. However, a crucial dimension of storytelling -- character-driven dialogue and speech -- remains underexplored. In this paper, we present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue, enriching visual storytelling with natural voice and character expression. Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior. While a story generation model such as Text2Story generates the corresponding visual scene, we focus on generating expressive character utterances from these prompts and the scene image. We apply a pretrained vision-language encoder to extract a high-level semantic feature from the representative frame, capturing salient visual context. This feature is then combined with the structured prompts and used to guide a large language model in synthesizing natural, character-consistent dialogue. To ensure contextual consistency across scenes, we introduce a Recursive Narrative Bank that conditions each dialogue generation on the accumulated dialogue history from prior scenes. This approach enables characters to speak in ways that reflect their evolving goals and interactions throughout a story. Finally, we render each utterance as expressive, character-consistent speech, resulting in fully-voiced video narratives. Our framework requires no additional training and demonstrates applicability across a variety of story settings, from fantasy adventures to slice-of-life episodes.
Related papers
- Aether Weaver: Multimodal Affective Narrative Co-Generation with Dynamic Scene Graphs [0.8702432681310401]
Aether Weaver is a novel framework for narrative co-generation that overcomes limitations of multimodal text-to-visual pipelines.<n>Our system concurrently synthesizes textual narratives, dynamic scene graph representations, visual scenes, and affective soundscapes.
arXiv Detail & Related papers (2025-07-29T15:01:31Z) - From Panels to Prose: Generating Literary Narratives from Comics [55.544015596503726]
We develop an automated system that generates text-based literary narratives from manga comics.<n>Our approach aims to create an evocative and immersive prose that not only conveys the original narrative but also captures the depth and complexity of characters.
arXiv Detail & Related papers (2025-03-30T07:18:10Z) - MoCha: Towards Movie-Grade Talking Character Synthesis [62.007000023747445]
We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text.<n>Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region.<n>We propose MoCha, the first of its kind to generate talking characters.
arXiv Detail & Related papers (2025-03-30T04:22:09Z) - ContextualStory: Consistent Visual Storytelling with Spatially-Enhanced and Storyline Context [50.572907418430155]
ContextualStory is a framework designed to generate coherent story frames and extend frames for visual storytelling.<n>We introduce a Storyline Contextualizer to enrich context in storyline embedding, and a StoryFlow Adapter to measure scene changes between frames.<n>Experiments on PororoSV and FlintstonesSV datasets demonstrate that ContextualStory significantly outperforms existing SOTA methods in both story visualization and continuation.
arXiv Detail & Related papers (2024-07-13T05:02:42Z) - NarrativePlay: Interactive Narrative Understanding [27.440721435864194]
We introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment.
We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives.
NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
arXiv Detail & Related papers (2023-10-02T13:24:00Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Make-A-Story: Visual Memory Conditioned Consistent Story Generation [57.691064030235985]
We propose a novel autoregressive diffusion-based framework with a visual memory module that implicitly captures the actor and background context.
Our method outperforms prior state-of-the-art in generating frames with high visual quality.
Our experiments for story generation on the MUGEN, the PororoSV and the FlintstonesSV dataset show that our method not only outperforms prior state-of-the-art in generating frames with high visual quality, but also models appropriate correspondences between the characters and the background.
arXiv Detail & Related papers (2022-11-23T21:38:51Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
We present the first study to explore whether machines can understand and generate dialogue in stories.
We propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition.
We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory.
arXiv Detail & Related papers (2022-09-18T10:19:04Z) - ViNTER: Image Narrative Generation with Emotion-Arc-Aware Transformer [59.05857591535986]
We propose a model called ViNTER to generate image narratives that focus on time series representing varying emotions as "emotion arcs"
We present experimental results of both manual and automatic evaluations.
arXiv Detail & Related papers (2022-02-15T10:53:08Z) - Write-a-speaker: Text-based Emotional and Rhythmic Talking-head
Generation [28.157431757281692]
We propose a text-based talking-head video generation framework that synthesizes high-fidelity facial expressions and head motions.
Our framework consists of a speaker-independent stage and a speaker-specific stage.
Our algorithm achieves high-quality photo-realistic talking-head videos including various facial expressions and head motions according to speech rhythms.
arXiv Detail & Related papers (2021-04-16T09:44:12Z) - Open Domain Dialogue Generation with Latent Images [43.78366219197779]
We propose learning a response generation model with both image-grounded dialogues and textual dialogues.
In the first scenario, image-grounded dialogues can be effectively augmented by textual dialogues with latent images.
In the second scenario, latent images can enrich the content of responses and at the same time keep them relevant to contexts.
arXiv Detail & Related papers (2020-04-04T17:32:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.