CASTILLO: Characterizing Response Length Distributions of Large Language Models
- URL: http://arxiv.org/abs/2505.16881v1
- Date: Thu, 22 May 2025 16:35:33 GMT
- Title: CASTILLO: Characterizing Response Length Distributions of Large Language Models
- Authors: Daniel F. Perez-Ramirez, Dejan Kostic, Magnus Boman,
- Abstract summary: We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used large language models.<n>Our analysis reveals significant inter- and intra-model variability in response lengths, as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses.
- Score: 3.5041586868397854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficiently managing compute resources for Large Language Model (LLM) inference remains challenging due to the inherently stochastic and variable lengths of autoregressive text generation. Accurately estimating response lengths in advance enables proactive resource allocation, yet existing approaches either bias text generation towards certain lengths or rely on assumptions that ignore model- and prompt-specific variability. We introduce CASTILLO, a dataset characterizing response length distributions across 13 widely-used open-source LLMs evaluated on seven distinct instruction-following corpora. For each $\langle$prompt, model$\rangle$ sample pair, we generate 10 independent completions using fixed decoding hyper-parameters, record the token length of each response, and publish summary statistics (mean, std-dev, percentiles), along with the shortest and longest completions, and the exact generation settings. Our analysis reveals significant inter- and intra-model variability in response lengths (even under identical generation settings), as well as model-specific behaviors and occurrences of partial text degeneration in only subsets of responses. CASTILLO enables the development of predictive models for proactive scheduling and provides a systematic framework for analyzing model-specific generation behaviors. We publicly release the dataset and code to foster research at the intersection of generative language modeling and systems.
Related papers
- Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models [14.175953642749649]
Large language models often struggle to generate responses of a specific length.
We introduce a novel, model-agnostic approach called Ruler to enhance the instruction-following ability of large language models under length-constrained instructions.
arXiv Detail & Related papers (2024-09-27T17:44:58Z) - Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
We propose a systematic way to estimate the capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step.<n>Our work offers a comprehensive comparison of existing truncation sampling methods and serves as a practical user guideline for their parameter selection.
arXiv Detail & Related papers (2024-08-24T14:14:32Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Evaluation of Faithfulness Using the Longest Supported Subsequence [52.27522262537075]
We introduce a novel approach to evaluate faithfulness of machine-generated text by computing the longest noncontinuous of the claim that is supported by the context.
Using a new human-annotated dataset, we finetune a model to generate Longest Supported Subsequence (LSS)
Our proposed metric demonstrates an 18% enhancement over the prevailing state-of-the-art metric for faithfulness on our dataset.
arXiv Detail & Related papers (2023-08-23T14:18:44Z) - Summarization with Precise Length Control [23.688834410051]
We present a framework to generate summaries with precisely the specified number of tokens or sentences.
We jointly train the models to predict the lengths, so our model can generate summaries with optimal length.
arXiv Detail & Related papers (2023-05-09T04:45:24Z) - Adapting Pretrained Text-to-Text Models for Long Text Sequences [39.62224414485055]
We adapt an existing pretrained text-to-text model for long-sequence inputs.
We build a long-context model that achieves competitive performance on long-text QA tasks.
arXiv Detail & Related papers (2022-09-21T00:41:07Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
We introduce scenario-based semantic parsing: a variant of the original task which first requires disambiguating an utterance's "scenario"
This formulation enables us to isolate coarse-grained and fine-grained aspects of the task, each of which we solve with off-the-shelf neural modules.
Our model is modular, differentiable, interpretable, and allows us to garner extra supervision from scenarios.
arXiv Detail & Related papers (2022-02-02T08:00:21Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.