Active Speech Enhancement: Active Speech Denoising Decliping and Deveraberation
- URL: http://arxiv.org/abs/2505.16911v2
- Date: Fri, 23 May 2025 14:33:56 GMT
- Title: Active Speech Enhancement: Active Speech Denoising Decliping and Deveraberation
- Authors: Ofir Yaish, Yehuda Mishaly, Eliya Nachmani,
- Abstract summary: We introduce a new paradigm for active sound modification: Active Speech Enhancement (ASE)<n>We propose a novel Transformer-Mamba-based architecture, along with a task-specific loss function designed to jointly optimize interference suppression and signal enrichment.<n>Our method outperforms existing baselines across multiple speech processing tasks -- including denoising, dereverberation, and declipping.
- Score: 13.575063025878208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new paradigm for active sound modification: Active Speech Enhancement (ASE). While Active Noise Cancellation (ANC) algorithms focus on suppressing external interference, ASE goes further by actively shaping the speech signal -- both attenuating unwanted noise components and amplifying speech-relevant frequencies -- to improve intelligibility and perceptual quality. To enable this, we propose a novel Transformer-Mamba-based architecture, along with a task-specific loss function designed to jointly optimize interference suppression and signal enrichment. Our method outperforms existing baselines across multiple speech processing tasks -- including denoising, dereverberation, and declipping -- demonstrating the effectiveness of active, targeted modulation in challenging acoustic environments.
Related papers
- Deep Active Speech Cancellation with Multi-Band Mamba Network [62.73250985838971]
We present a novel deep learning network for Active Speech Cancellation (ASC)<n>The proposed Multi-Band Mamba architecture segments input audio into distinct frequency bands, enabling precise anti-signal generation.<n> Experimental results demonstrate substantial performance gains, achieving up to 7.2dB improvement in ANC scenarios and 6.2dB in ASC.
arXiv Detail & Related papers (2025-02-03T09:22:26Z) - Robust Active Speaker Detection in Noisy Environments [29.785749048315616]
We formulate a robust active speaker detection (rASD) problem in noisy environments.
Existing ASD approaches leverage both audio and visual modalities, but non-speech sounds in the surrounding environment can negatively impact performance.
We propose a novel framework that utilizes audio-visual speech separation as guidance to learn noise-free audio features.
arXiv Detail & Related papers (2024-03-27T20:52:30Z) - Continuous Modeling of the Denoising Process for Speech Enhancement
Based on Deep Learning [61.787485727134424]
We use a state variable to indicate the denoising process.
A UNet-like neural network learns to estimate every state variable sampled from the continuous denoising process.
Experimental results indicate that preserving a small amount of noise in the clean target benefits speech enhancement.
arXiv Detail & Related papers (2023-09-17T13:27:11Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
This study addresses the speech enhancement (SE) task within the causal inference paradigm by modeling the noise presence as an intervention.
The proposed causal inference-based speech enhancement (CISE) separates clean and noisy frames in an intervened noisy speech using a noise detector and assigns both sets of frames to two mask-based enhancement modules (EMs) to perform noise-conditional SE.
arXiv Detail & Related papers (2022-11-02T15:03:50Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
Noise robustness is essential for deploying automatic speech recognition systems in real-world environments.
We employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition.
We achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
arXiv Detail & Related papers (2021-10-28T20:39:02Z) - Interactive Feature Fusion for End-to-End Noise-Robust Speech
Recognition [25.84784710031567]
We propose an interactive feature fusion network (IFF-Net) for noise-robust speech recognition.
Experimental results show that the proposed method achieves absolute word error rate (WER) reduction of 4.1% over the best baseline.
Our further analysis indicates that the proposed IFF-Net can complement some missing information in the over-suppressed enhanced feature.
arXiv Detail & Related papers (2021-10-11T13:40:07Z) - PL-EESR: Perceptual Loss Based END-TO-END Robust Speaker Representation
Extraction [90.55375210094995]
Speech enhancement aims to improve the perceptual quality of the speech signal by suppression of the background noise.
We propose an end-to-end deep learning framework, dubbed PL-EESR, for robust speaker representation extraction.
arXiv Detail & Related papers (2021-10-03T07:05:29Z) - Speech Enhancement for Wake-Up-Word detection in Voice Assistants [60.103753056973815]
Keywords spotting and in particular Wake-Up-Word (WUW) detection is a very important task for voice assistants.
This paper proposes a Speech Enhancement model adapted to the task of WUW detection.
It aims at increasing the recognition rate and reducing the false alarms in the presence of these types of noises.
arXiv Detail & Related papers (2021-01-29T18:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.