Deep mineralogical segmentation of thin section images based on QEMSCAN maps
- URL: http://arxiv.org/abs/2505.17008v1
- Date: Thu, 22 May 2025 17:58:34 GMT
- Title: Deep mineralogical segmentation of thin section images based on QEMSCAN maps
- Authors: Jean Pablo Vieira de Mello, Matheus Augusto Alves Cuglieri, Leandro P. de Figueiredo, Fernando Bordignon, Marcelo Ramalho Albuquerque, Rodrigo Surmas, Bruno Cavalcanti de Paula,
- Abstract summary: This work proposes a Convolutional Neural Network model for automatic mineralogical segmentation of thin section images of carbonate rocks.<n>The model is able to mimic the QEMSCAN mapping itself in a low-cost, generalized and efficient manner.<n>It shows promising results, especially with regard to the proper delineation of minerals boundaries on solid textures.
- Score: 34.92366371606116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpreting the mineralogical aspects of rock thin sections is an important task for oil and gas reservoirs evaluation. However, human analysis tend to be subjective and laborious. Technologies like QEMSCAN(R) are designed to automate the mineralogical mapping process, but also suffer from limitations like high monetary costs and time-consuming analysis. This work proposes a Convolutional Neural Network model for automatic mineralogical segmentation of thin section images of carbonate rocks. The model is able to mimic the QEMSCAN mapping itself in a low-cost, generalized and efficient manner. For this, the U-Net semantic segmentation architecture is trained on plane and cross polarized thin section images using the corresponding QEMSCAN maps as target, which is an approach not widely explored. The model was instructed to differentiate occurrences of Calcite, Dolomite, Mg-Clay Minerals, Quartz, Pores and the remaining mineral phases as an unique class named "Others", while it was validated on rock facies both seen and unseen during training, in order to address its generalization capability. Since the images and maps are provided in different resolutions, image registration was applied to align then spatially. The study reveals that the quality of the segmentation is very much dependent on these resolution differences and on the variety of learnable rock textures. However, it shows promising results, especially with regard to the proper delineation of minerals boundaries on solid textures and precise estimation of the minerals distributions, describing a nearly linear relationship between expected and predicted distributions, with coefficient of determination (R^2) superior to 0.97 for seen facies and 0.88 for unseen.
Related papers
- Direct mineral content prediction from drill core images via transfer learning [0.0]
Deep subsurface exploration is important for mining, oil and gas industries, as well as in the assessment of geological units for the disposal of chemical or nuclear waste.
This study investigates the potential of utilizing machine learning, specifically convolutional neural networks (CNN), to assess the lithology and mineral content solely from analysis of drill core images.
The outcome reveals a remarkable 96.7% accuracy in the classification of drill core segments into distinct formation classes.
arXiv Detail & Related papers (2024-03-27T12:15:22Z) - Unsupervised ore/waste classification on open-cut mine faces using
close-range hyperspectral data [1.8111829286068908]
A pipeline for unsupervised mapping of spectra on a mine face is proposed.
The proposed pipeline brings together unsupervised and self-supervised algorithms in a unified system to map minerals on a mine face.
The consistency of its mapping capability is demonstrated using data acquired at two different times of day.
arXiv Detail & Related papers (2023-02-09T21:03:03Z) - Multiscale Analysis for Improving Texture Classification [62.226224120400026]
This paper employs the Gaussian-Laplacian pyramid to treat different spatial frequency bands of a texture separately.
We aggregate features extracted from gray and color texture images using bio-inspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix features, and Haralick statistical features into a single feature vector.
arXiv Detail & Related papers (2022-04-21T01:32:22Z) - MiNet: A Convolutional Neural Network for Identifying and Categorising
Minerals [0.0]
We develop a single-label image classification model to identify and categorise seven classes of minerals.
Experiments conducted using real-world datasets show that the model achieves an accuracy of 90.75%.
arXiv Detail & Related papers (2021-11-22T15:00:28Z) - Generalized Unsupervised Clustering of Hyperspectral Images of
Geological Targets in the Near Infrared [0.0]
Clustering and classifying spectrally similar materials is often a first step in applications ranging from economic mineral exploration on Earth to planetary exploration on Mars.
Here we develop a fully unsupervised workflow for feature extraction and clustering informed by both expert spectral geologist input and quantitative metrics.
This pipeline provides a fast and accurate clustering map of similar geological materials and consistently identifies and separates major mineral classes in both laboratory imagery and remote sensing imagery.
arXiv Detail & Related papers (2021-06-24T21:05:10Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - MudrockNet: Semantic Segmentation of Mudrock SEM Images through Deep
Learning [0.0]
We propose a deep learning SEM segmentation model, MudrockNet based on Google's DeepLab-v3+ architecture.
The trained deep learning model obtained a pixel-accuracy about 90%, and predictions for the test data obtained a mean intersection over union (IoU) of 0.6591 for silt grains and 0.6642 for pores.
arXiv Detail & Related papers (2021-02-05T19:38:44Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Deep learning for lithological classification of carbonate rock micro-CT
images [52.77024349608834]
This work intends to present an application of deep learning techniques to identify patterns in Brazilian pre-salt carbonate rock microtomographic images.
Four convolutional neural network models were proposed.
According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second.
arXiv Detail & Related papers (2020-07-30T19:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.