VLM-KG: Multimodal Radiology Knowledge Graph Generation
- URL: http://arxiv.org/abs/2505.17042v1
- Date: Tue, 13 May 2025 06:11:10 GMT
- Title: VLM-KG: Multimodal Radiology Knowledge Graph Generation
- Authors: Abdullah Abdullah, Seong Tae Kim,
- Abstract summary: We propose a novel framework for knowledge graph generation in radiology.<n>Our approach outperforms previous methods and introduces the first multimodal solution for radiology knowledge graph generation.
- Score: 3.6669792968901573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vision-Language Models (VLMs) have demonstrated remarkable success in natural language generation, excelling at instruction following and structured output generation. Knowledge graphs play a crucial role in radiology, serving as valuable sources of factual information and enhancing various downstream tasks. However, generating radiology-specific knowledge graphs presents significant challenges due to the specialized language of radiology reports and the limited availability of domain-specific data. Existing solutions are predominantly unimodal, meaning they generate knowledge graphs only from radiology reports while excluding radiographic images. Additionally, they struggle with long-form radiology data due to limited context length. To address these limitations, we propose a novel multimodal VLM-based framework for knowledge graph generation in radiology. Our approach outperforms previous methods and introduces the first multimodal solution for radiology knowledge graph generation.
Related papers
- Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs [18.025481751074214]
We introduce a system, named ReXKG, which extracts structured information from processed reports to construct a radiology knowledge graph.
We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models.
arXiv Detail & Related papers (2024-08-26T16:28:56Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists.
This paper introduces a novel RRG method, textbfLM-RRG, that integrates large models (LMs) with clinical quality reinforcement learning.
Experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
arXiv Detail & Related papers (2024-03-11T13:47:11Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-08-29T17:44:28Z) - Radiology-GPT: A Large Language Model for Radiology [74.07944784968372]
We introduce Radiology-GPT, a large language model for radiology.
It demonstrates superior performance compared to general language models such as StableLM, Dolly and LLaMA.
It exhibits significant versatility in radiological diagnosis, research, and communication.
arXiv Detail & Related papers (2023-06-14T17:57:24Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models [72.8965643836841]
We introduce XrayGPT, a novel conversational medical vision-language model.<n>It can analyze and answer open-ended questions about chest radiographs.<n>We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Knowledge Matters: Radiology Report Generation with General and Specific
Knowledge [24.995748604459013]
We propose a knowledge-enhanced radiology report generation approach.
By merging the visual features of the radiology image with general knowledge and specific knowledge, the proposed model can improve the quality of generated reports.
arXiv Detail & Related papers (2021-12-30T10:36:04Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
The PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD)
PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias.
PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias.
arXiv Detail & Related papers (2021-06-13T11:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.