Informatics for Food Processing
- URL: http://arxiv.org/abs/2505.17087v1
- Date: Tue, 20 May 2025 20:44:31 GMT
- Title: Informatics for Food Processing
- Authors: Gordana Ispirova, Michael Sebek, Giulia Menichetti,
- Abstract summary: The chapter emphasizes the transformative role of machine learning, artificial intelligence (AI), and data science in advancing food informatics.<n>To address these issues, the chapter presents novel computational approaches, including FoodProX, a random forest model trained on nutrient composition data to infer processing levels.<n>A key contribution of the chapter is a novel case study using the Open Food Facts database, showcasing how multimodal AI models can integrate structured and unstructured data to classify foods at scale.
- Score: 0.5266869303483376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This chapter explores the evolution, classification, and health implications of food processing, while emphasizing the transformative role of machine learning, artificial intelligence (AI), and data science in advancing food informatics. It begins with a historical overview and a critical review of traditional classification frameworks such as NOVA, Nutri-Score, and SIGA, highlighting their strengths and limitations, particularly the subjectivity and reproducibility challenges that hinder epidemiological research and public policy. To address these issues, the chapter presents novel computational approaches, including FoodProX, a random forest model trained on nutrient composition data to infer processing levels and generate a continuous FPro score. It also explores how large language models like BERT and BioBERT can semantically embed food descriptions and ingredient lists for predictive tasks, even in the presence of missing data. A key contribution of the chapter is a novel case study using the Open Food Facts database, showcasing how multimodal AI models can integrate structured and unstructured data to classify foods at scale, offering a new paradigm for food processing assessment in public health and research.
Related papers
- Enhancing FKG.in: automating Indian food composition analysis [2.180451315432493]
This paper presents a novel approach to compute food composition data for Indian recipes using a knowledge graph.<n>The workflow aims to complement FKG.in and iteratively supplement food composition data from verified knowledge bases.<n>It briefly outlines how users can interact with the workflow to obtain diet-based health recommendations.
arXiv Detail & Related papers (2024-12-06T18:27:15Z) - MetaFood3D: 3D Food Dataset with Nutrition Values [52.16894900096017]
This dataset consists of 743 meticulously scanned and labeled 3D food objects across 131 categories.<n>Our MetaFood3D dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks.
arXiv Detail & Related papers (2024-09-03T15:02:52Z) - RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Food is a unified food dataset that comprises over 100,000 images with various food labels.<n>Uni-Food is designed to provide a more holistic approach to food data analysis.<n>We introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach to address the inherent challenges of food-related multitasking.
arXiv Detail & Related papers (2024-07-17T16:49:34Z) - Synthesizing Knowledge-enhanced Features for Real-world Zero-shot Food
Detection [37.866458336327184]
Food detection needs Zero-Shot Detection (ZSD) on novel unseen food objects to support real-world scenarios.
We first benchmark the task of Zero-Shot Food Detection (ZSFD) by introducing FOWA dataset with rich attribute annotations.
We propose a novel framework ZSFDet to tackle fine-grained problems by exploiting the interaction between complex attributes.
arXiv Detail & Related papers (2024-02-14T15:32:35Z) - Muti-Stage Hierarchical Food Classification [9.013592803864086]
We propose a multi-stage hierarchical framework for food item classification by iteratively clustering and merging food items during the training process.
Our method is evaluated on VFN-nutrient dataset and achieve promising results compared with existing work in terms of both food type and food item classification.
arXiv Detail & Related papers (2023-09-03T04:45:44Z) - FIRE: Food Image to REcipe generation [10.45344523054623]
Food computing aims to develop end-to-end intelligent systems capable of autonomously producing recipe information for a food image.
This paper proposes FIRE, a novel methodology tailored to recipe generation in the food computing domain.
We showcase two practical applications that can benefit from integrating FIRE with large language model prompting.
arXiv Detail & Related papers (2023-08-28T08:14:20Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
The paper presents a weakly supervised methodology for training food image classification and semantic segmentation models.
The proposed methodology is based on a multiple instance learning approach in combination with an attention-based mechanism.
We conduct experiments on two meta-classes within the FoodSeg103 data set to verify the feasibility of the proposed approach.
arXiv Detail & Related papers (2023-08-22T13:59:47Z) - UMDFood: Vision-language models boost food composition compilation [26.5694236976957]
We propose a novel vision-language model, UMDFood-VL, using front-of-package labeling and product images to accurately estimate food composition profiles.
Up to 82.2% of selected products' estimated error between chemical analysis results and model estimation results are less than 10%.
This performance sheds light on generalization towards other food and nutrition-related data compilation and catalyzation.
arXiv Detail & Related papers (2023-05-18T03:18:12Z) - Semi-Automated Construction of Food Composition Knowledge Base [0.06445605125467573]
We propose a semi-automated framework for constructing a knowledge base of food composition from the scientific literature available online.
Our work demonstrates how human-in-the-loop models are a step toward AI-assisted food systems that scale well to the ever-increasing big data.
arXiv Detail & Related papers (2023-01-24T22:08:49Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
Our proposed model can produce high-quality and coherent recipes, and achieve the state-of-the-art performance on the benchmark Recipe1M dataset.
arXiv Detail & Related papers (2021-10-04T06:36:31Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.