Shallow Preference Signals: Large Language Model Aligns Even Better with Truncated Data?
- URL: http://arxiv.org/abs/2505.17122v1
- Date: Wed, 21 May 2025 17:59:02 GMT
- Title: Shallow Preference Signals: Large Language Model Aligns Even Better with Truncated Data?
- Authors: Xuan Qi, Jiahao Qiu, Xinzhe Juan, Yue Wu, Mengdi Wang,
- Abstract summary: We show that the distinguishing signal obtained in preferred responses is often concentrated in the early tokens.<n>Surprisingly, models trained on truncated datasets, retaining only the first half or fewer tokens, achieve comparable or even superior performance to those trained on full datasets.<n>We consider two simple decoding strategies motivated by the shallow reward signal observation, namely Length Control Decoding and KL Threshold Control Decoding, which leverage shallow preference signals to optimize the trade-off between alignment and computational efficiency.
- Score: 34.18909976476456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models (LLMs) with human preferences remains a key challenge in AI. Preference-based optimization methods, such as Reinforcement Learning with Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on human-annotated datasets to improve alignment. In this work, we identify a crucial property of the existing learning method: the distinguishing signal obtained in preferred responses is often concentrated in the early tokens. We refer to this as shallow preference signals. To explore this property, we systematically truncate preference datasets at various points and train both reward models and DPO models on the truncated data. Surprisingly, models trained on truncated datasets, retaining only the first half or fewer tokens, achieve comparable or even superior performance to those trained on full datasets. For example, a reward model trained on the Skywork-Reward-Preference-80K-v0.2 dataset outperforms the full dataset when trained on a 40\% truncated dataset. This pattern is consistent across multiple datasets, suggesting the widespread presence of shallow preference signals. We further investigate the distribution of the reward signal through decoding strategies. We consider two simple decoding strategies motivated by the shallow reward signal observation, namely Length Control Decoding and KL Threshold Control Decoding, which leverage shallow preference signals to optimize the trade-off between alignment and computational efficiency. The performance is even better, which again validates our hypothesis. The phenomenon of shallow preference signals highlights potential issues in LLM alignment: existing alignment methods often focus on aligning only the initial tokens of responses, rather than considering the full response. This could lead to discrepancies with real-world human preferences, resulting in suboptimal alignment performance.
Related papers
- Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap [13.89078939095465]
We introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism.<n>Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks.
arXiv Detail & Related papers (2025-08-06T07:24:14Z) - RL-Selector: Reinforcement Learning-Guided Data Selection via Redundancy Assessment [10.284993431741377]
We introduce the concept of epsilon-sample cover, which quantifies sample redundancy based on inter-sample relationships.<n>We reformulate data selection as a reinforcement learning process and propose RL-Selector.<n>Our method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-26T06:28:56Z) - Enhancing Training Data Attribution with Representational Optimization [57.61977909113113]
Training data attribution methods aim to measure how training data impacts a model's predictions.<n>We propose AirRep, a representation-based approach that closes this gap by learning task-specific and model-aligned representations explicitly for TDA.<n>AirRep introduces two key innovations: a trainable encoder tuned for attribution quality, and an attention-based pooling mechanism that enables accurate estimation of group-wise influence.
arXiv Detail & Related papers (2025-05-24T05:17:53Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.<n>Data selection has shown promise in identifying the most representative samples from the entire dataset.<n>We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.<n>We show that our approach consistently boosts DPO by a considerable margin.<n>Our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Not Everything is All You Need: Toward Low-Redundant Optimization for Large Language Model Alignment [126.34547428473968]
Large language models (LLMs) are still struggling in aligning with human preference in complex tasks and scenarios.
We propose a low-redundant alignment method named textbfALLO, focusing on optimizing the most related neurons with the most useful supervised signals.
Experimental results on 10 datasets have shown the effectiveness of ALLO.
arXiv Detail & Related papers (2024-06-18T13:34:40Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.<n>Our key idea is leveraging the human prior knowledge within the small (seed) data.<n>We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Binary Classifier Optimization for Large Language Model Alignment [4.61411484523337]
In real-world services such as ChatGPT, aligning models based on user feedback is crucial for improving performance.<n>Most existing alignment research relies on preference-based approaches that require both positive and negative responses as a pair.<n>We propose Binary Optimization (BCO), a technique that effectively aligns LLMs using only binary feedback.
arXiv Detail & Related papers (2024-04-06T15:20:59Z) - Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment [105.34140537748546]
We propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained quality signals that are derived by contrasting good and bad responses.
Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones.
Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment.
arXiv Detail & Related papers (2023-11-07T15:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.