Analyzing Fine-Grained Alignment and Enhancing Vision Understanding in Multimodal Language Models
- URL: http://arxiv.org/abs/2505.17316v1
- Date: Thu, 22 May 2025 22:10:27 GMT
- Title: Analyzing Fine-Grained Alignment and Enhancing Vision Understanding in Multimodal Language Models
- Authors: Jiachen Jiang, Jinxin Zhou, Bo Peng, Xia Ning, Zhihui Zhu,
- Abstract summary: We show the role of the projector in compressing vision embeddings and aligning them with word embeddings.<n>We then examine patch-level alignment -- the alignment between each vision patch and its corresponding semantic words.<n>Our experiments show that patch-aligned training achieves stronger compression capability and improved patch-level alignment.
- Score: 21.197083685420584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving better alignment between vision embeddings and Large Language Models (LLMs) is crucial for enhancing the abilities of Multimodal LLMs (MLLMs), particularly for recent models that rely on powerful pretrained vision encoders and LLMs. A common approach to connect the pretrained vision encoder and LLM is through a projector applied after the vision encoder. However, the projector is often trained to enable the LLM to generate captions, and hence the mechanism by which LLMs understand each vision token remains unclear. In this work, we first investigate the role of the projector in compressing vision embeddings and aligning them with word embeddings. We show that the projector significantly compresses visual information, removing redundant details while preserving essential elements necessary for the LLM to understand visual content. We then examine patch-level alignment -- the alignment between each vision patch and its corresponding semantic words -- and propose a *multi-semantic alignment hypothesis*. Our analysis indicates that the projector trained by caption loss improves patch-level alignment but only to a limited extent, resulting in weak and coarse alignment. To address this issue, we propose *patch-aligned training* to efficiently enhance patch-level alignment. Our experiments show that patch-aligned training (1) achieves stronger compression capability and improved patch-level alignment, enabling the MLLM to generate higher-quality captions, (2) improves the MLLM's performance by 16% on referring expression grounding tasks, 4% on question-answering tasks, and 3% on modern instruction-following benchmarks when using the same supervised fine-tuning (SFT) setting. The proposed method can be easily extended to other multimodal models.
Related papers
- AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding [63.09928907734156]
AlignVLM is a vision-text alignment method that maps visual features to a weighted average of text embeddings.<n>Our experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods.
arXiv Detail & Related papers (2025-02-03T13:34:51Z) - Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage [50.84150600032693]
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations.<n>We propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions.<n>Our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V.
arXiv Detail & Related papers (2024-12-20T01:37:22Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.<n>We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.<n>We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - Enhancing Perception Capabilities of Multimodal LLMs with Training-Free Fusion [40.56646959926701]
Multimodal LLMs (MLLMs) equip language models with visual capabilities by aligning vision encoders with language models.<n>Existing methods to enhance the visual perception of MLLMs often involve designing more powerful vision encoders.<n>We introduce VisionFuse, a novel integration framework that efficiently utilizes multiple vision encoders from off-the-shelf MLLMs.
arXiv Detail & Related papers (2024-12-02T09:02:28Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
Large language models (LLMs) are surprisingly strong encoders for purely visual tasks in the absence of language.
Our work pushes the boundaries of leveraging LLMs for computer vision tasks.
We propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding.
arXiv Detail & Related papers (2023-10-19T17:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.