Scaling Up Biomedical Vision-Language Models: Fine-Tuning, Instruction Tuning, and Multi-Modal Learning
- URL: http://arxiv.org/abs/2505.17436v1
- Date: Fri, 23 May 2025 03:31:58 GMT
- Title: Scaling Up Biomedical Vision-Language Models: Fine-Tuning, Instruction Tuning, and Multi-Modal Learning
- Authors: Cheng Peng, Kai Zhang, Mengxian Lyu, Hongfang Liu, Lichao Sun, Yonghui Wu,
- Abstract summary: We developed two vision language models, BiomedGPT-Large and BiomedGPT-XLarge, based on an encoder-decoder-based transformer architecture.<n>We fine-tuned the two models on 23 benchmark datasets from 6 multi-modal biomedical tasks.<n>We assessed the zero-shot learning performance and alignment accuracy.
- Score: 25.982757026324474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To advance biomedical vison-language model capabilities through scaling up, fine-tuning, and instruction tuning, develop vision-language models with improved performance in handling long text, explore strategies to efficiently adopt vision language models for diverse multi-modal biomedical tasks, and examine the zero-shot learning performance. We developed two biomedical vision language models, BiomedGPT-Large and BiomedGPT-XLarge, based on an encoder-decoder-based transformer architecture. We fine-tuned the two models on 23 benchmark datasets from 6 multi-modal biomedical tasks including one image-only task (image classification), three language-only tasks (text understanding, text summarization and question answering), and two vision-language tasks (visual question answering and image captioning). We compared the developed scaled models with our previous BiomedGPT-Base model and existing prestigious models reported in the literature. We instruction-tuned the two models using a large-scale multi-modal biomedical instruction-tuning dataset and assessed the zero-shot learning performance and alignment accuracy.
Related papers
- Tevatron 2.0: Unified Document Retrieval Toolkit across Scale, Language, and Modality [74.59049806800176]
This demo paper highlights the Tevatron toolkit's key features, bridging academia and industry.<n>We showcase a unified dense retriever achieving strong multilingual and multimodal effectiveness.<n>We also release OmniEmbed, to the best of our knowledge, the first embedding model that unifies text, image document, video, and audio retrieval.
arXiv Detail & Related papers (2025-05-05T08:52:49Z) - BioD2C: A Dual-level Semantic Consistency Constraint Framework for Biomedical VQA [5.840467499436581]
We propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA.<n>BioD2C achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question.<n>In this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context.
arXiv Detail & Related papers (2025-03-04T10:39:42Z) - LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
State-of-the-art medical multi-modal large language models (med-MLLM) leverage instruction-following data in pre-training.
LoGra-Med is a new multi-graph alignment algorithm that enforces triplet correlations across image modalities, conversation-based descriptions, and extended captions.
Our results show LoGra-Med matches LLAVA-Med performance on 600K image-text pairs for Medical VQA and significantly outperforms it when trained on 10% of the data.
arXiv Detail & Related papers (2024-10-03T15:52:03Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - A Refer-and-Ground Multimodal Large Language Model for Biomedicine [10.519866875035003]
The Med-GRIT-270k dataset is the first dedicated to the biomedical domain and integrates refer and ground conversations.
We introduce a Refer-and-Ground Multimodal Large Language Model for Biomedicine (BiRD) by using this dataset and multi-task instruction learning.
arXiv Detail & Related papers (2024-06-26T07:56:17Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical
Knowledge Graph Insights [15.952942443163474]
We propose a new state-of-the-art approach for obtaining high-fidelity representations of biomedical concepts and sentences.
We demonstrate consistent and substantial performance improvements over the previous state of the art.
Besides our new state-of-the-art biomedical model for English, we also distill and release a multilingual model compatible with 50+ languages.
arXiv Detail & Related papers (2023-11-27T18:46:17Z) - Enhancing Visual Grounding and Generalization: A Multi-Task Cycle Training Approach for Vision-Language Models [41.64717254672843]
Visual grounding occupies a pivotal position in multi-modality vision-language models.
We propose ViLaM, a large multi-modality model, that supports multi-tasks of VG.
ViLaM extends a wide range of instructions, thereby significantly enhancing its generalization and interaction potentials.
arXiv Detail & Related papers (2023-11-21T03:40:09Z) - BiomedJourney: Counterfactual Biomedical Image Generation by
Instruction-Learning from Multimodal Patient Journeys [99.7082441544384]
We present BiomedJourney, a novel method for counterfactual biomedical image generation by instruction-learning.
We use GPT-4 to process the corresponding imaging reports and generate a natural language description of disease progression.
The resulting triples are then used to train a latent diffusion model for counterfactual biomedical image generation.
arXiv Detail & Related papers (2023-10-16T18:59:31Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - LLaVA-Med: Training a Large Language-and-Vision Assistant for
Biomedicine in One Day [85.19963303642427]
We propose a cost-efficient approach for training a vision-language conversational assistant that can answer open-ended research questions of biomedical images.
The model first learns to align biomedical vocabulary using the figure-caption pairs as is, then learns to master open-ended conversational semantics.
This enables us to train a Large Language and Vision Assistant for BioMedicine in less than 15 hours (with eight A100s)
arXiv Detail & Related papers (2023-06-01T16:50:07Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Making the Most of Text Semantics to Improve Biomedical Vision--Language
Processing [17.96645738679543]
We show that textual semantic modelling can substantially improve contrastive learning in self-supervised vision--language processing.
We propose a self-supervised joint vision--language approach with a focus on better text modelling.
arXiv Detail & Related papers (2022-04-21T00:04:35Z) - Multi-modal Understanding and Generation for Medical Images and Text via
Vision-Language Pre-Training [5.119201893752376]
We propose Medical Vision Language Learner (MedViLL) which adopts a Transformer-based architecture combined with a novel multimodal attention masking scheme.
We empirically demonstrate the superior downstream task performance of MedViLL against various baselines including task-specific architectures.
arXiv Detail & Related papers (2021-05-24T15:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.