RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
- URL: http://arxiv.org/abs/2505.17540v1
- Date: Fri, 23 May 2025 06:44:26 GMT
- Title: RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
- Authors: Mingrui Wu, Lu Wang, Pu Zhao, Fangkai Yang, Jianjin Zhang, Jianfeng Liu, Yuefeng Zhan, Weihao Han, Hao Sun, Jiayi Ji, Xiaoshuai Sun, Qingwei Lin, Weiwei Deng, Dongmei Zhang, Feng Sun, Qi Zhang, Rongrong Ji,
- Abstract summary: RePrompt is a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning.<n>Our approach enables end-to-end training without human-annotated data.
- Score: 88.14234949860105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Related papers
- EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models [31.31018600797305]
We propose a prompt inversion technique called sys for text-to-image diffusion models.<n>Our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability.
arXiv Detail & Related papers (2025-06-03T16:44:15Z) - Self-Rewarding Large Vision-Language Models for Optimizing Prompts in Text-to-Image Generation [55.42794740244581]
We propose a novel prompt optimization framework, designed to rephrase a simple user prompt into a sophisticated prompt to a text-to-image model.<n> Specifically, we employ the large vision language models (LVLMs) as the solver to rewrite the user prompt, and concurrently, employ LVLMs as a reward model to score the aesthetics and alignment of the images generated by the optimized prompt.<n>Instead of laborious human feedback, we exploit the prior knowledge of the LVLM to provide rewards, i.e., AI feedback.
arXiv Detail & Related papers (2025-05-22T15:05:07Z) - Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training [68.41837295318152]
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with visual texts.
Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese text.
We propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese.
arXiv Detail & Related papers (2024-10-06T10:25:39Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models and Large Language Models [52.23899502520261]
We introduce a novel framework named, ARTIST, which incorporates a dedicated textual diffusion model to focus on the learning of text structures specifically.<n>We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.<n>This disentangled architecture design and training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - Batch-Instructed Gradient for Prompt Evolution:Systematic Prompt Optimization for Enhanced Text-to-Image Synthesis [3.783530340696776]
This study proposes a Multi-Agent framework to optimize input prompts for text-to-image generation models.
A professional prompts database serves as a benchmark to guide the instruction modifier towards generating high-caliber prompts.
Preliminary ablation studies highlight the effectiveness of various system components and suggest areas for future improvements.
arXiv Detail & Related papers (2024-06-13T00:33:29Z) - Dynamic Prompt Optimizing for Text-to-Image Generation [63.775458908172176]
We introduce the textbfPrompt textbfAuto-textbfEditing (PAE) method to improve text-to-image generative models.
We employ an online reinforcement learning strategy to explore the weights and injection time steps of each word, leading to the dynamic fine-control prompts.
arXiv Detail & Related papers (2024-04-05T13:44:39Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.