Modeling Ranking Properties with In-Context Learning
- URL: http://arxiv.org/abs/2505.17736v1
- Date: Fri, 23 May 2025 10:58:22 GMT
- Title: Modeling Ranking Properties with In-Context Learning
- Authors: Nilanjan Sinhababu, Andrew Parry, Debasis Ganguly, Pabitra Mitra,
- Abstract summary: We propose an in-context learning (ICL) approach that eliminates the need for task-specific training for each ranking scenario and dataset.<n>Our method relies on a small number of example rankings that demonstrate the desired trade-offs between objectives for past queries similar to the current input.
- Score: 13.34397013426643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While standard IR models are mainly designed to optimize relevance, real-world search often needs to balance additional objectives such as diversity and fairness. These objectives depend on inter-document interactions and are commonly addressed using post-hoc heuristics or supervised learning methods, which require task-specific training for each ranking scenario and dataset. In this work, we propose an in-context learning (ICL) approach that eliminates the need for such training. Instead, our method relies on a small number of example rankings that demonstrate the desired trade-offs between objectives for past queries similar to the current input. We evaluate our approach on four IR test collections to investigate multiple auxiliary objectives: group fairness (TREC Fairness), polarity diversity (Touch\'e), and topical diversity (TREC Deep Learning 2019/2020). We empirically validate that our method enables control over ranking behavior through demonstration engineering, allowing nuanced behavioral adjustments without explicit optimization.
Related papers
- Test-time Offline Reinforcement Learning on Goal-related Experience [50.94457794664909]
Research in foundation models has shown that performance can be substantially improved through test-time training.<n>We propose a novel self-supervised data selection criterion, which selects transitions from an offline dataset according to their relevance to the current state.<n>Our goal-conditioned test-time training (GC-TTT) algorithm applies this routine in a receding-horizon fashion during evaluation, adapting the policy to the current trajectory as it is being rolled out.
arXiv Detail & Related papers (2025-07-24T21:11:39Z) - Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHF has emerged as a predominant approach for aligning artificial intelligence systems with human preferences.<n> RLHF exhibits insufficient compliance capabilities when confronted with complex multi-instruction tasks.<n>We propose a novel Multi-level Aware Preference Learning (MAPL) framework, capable of enhancing multi-instruction capabilities.
arXiv Detail & Related papers (2025-05-19T08:33:11Z) - Goal-Conditioned Supervised Learning for Multi-Objective Recommendation [8.593384839118658]
Multi-objective learning endeavors to concurrently optimize multiple objectives using a single model.<n>This paper introduces a Multi-Objective Goal-Conditioned Supervised Learning framework for automatically learning to achieve multiple objectives from offline sequential data.
arXiv Detail & Related papers (2024-12-12T03:47:40Z) - Rethinking Meta-Learning from a Learning Lens [35.98940987691948]
We consider how to bridge the gap between theoretical understanding and practical implementation of meta-learning.<n>We propose TRLearner, a plug-and-play method that leverages task relation to calibrate meta-learning.
arXiv Detail & Related papers (2024-09-13T02:00:16Z) - SCoRe: Submodular Combinatorial Representation Learning [12.874523233023453]
We introduce the SCoRe (Submodular Combinatorial Representation) framework, a novel approach in representation learning.
SCoRe provides a new viewpoint to representation learning, by introducing a family of loss functions based on set-based submodular information measures.
arXiv Detail & Related papers (2023-09-29T22:09:07Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks.
In this work we overcome this issue by inferring a conditioning function, mapping the tasks' side information into a representation tailored to the task at hand.
We propose a meta-algorithm capable of leveraging this advantage in practice.
arXiv Detail & Related papers (2021-03-30T12:02:14Z) - Lessons from Chasing Few-Shot Learning Benchmarks: Rethinking the
Evaluation of Meta-Learning Methods [9.821362920940631]
We introduce a simple baseline for meta-learning, FIX-ML.
We explore two possible goals of meta-learning: to develop methods that generalize (i) to the same task distribution that generates the training set (in-distribution), or (ii) to new, unseen task distributions (out-of-distribution)
Our results highlight that in order to reason about progress in this space, it is necessary to provide a clearer description of the goals of meta-learning, and to develop more appropriate evaluation strategies.
arXiv Detail & Related papers (2021-02-23T05:34:30Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
We propose an algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way.
We show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
arXiv Detail & Related papers (2020-05-15T13:02:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.