Bruno: Backpropagation Running Undersampled for Novel device Optimization
- URL: http://arxiv.org/abs/2505.17791v1
- Date: Fri, 23 May 2025 12:06:43 GMT
- Title: Bruno: Backpropagation Running Undersampled for Novel device Optimization
- Authors: Luca Fehlings, Bojian Zhang, Paolo Gibertini, Martin A. Nicholson, Erika Covi, Fernando M. Quintana,
- Abstract summary: We present a bottom-up approach to train neural networks for hardware based on spiking neurons and synapses built on ferroelectric non-volatile devices (RRAM)<n>The training algorithm is then tested on a dataset with a network composed of quantized synapses based on RRAM and ferroelectric integrate-and-fire neurons.
- Score: 37.69303106863453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent efforts to improve the efficiency of neuromorphic and machine learning systems have focused on the development of application-specific integrated circuits (ASICs), which provide hardware specialized for the deployment of neural networks, leading to potential gains in efficiency and performance. These systems typically feature an architecture that goes beyond the von Neumann architecture employed in general-purpose hardware such as GPUs. Neural networks developed for this specialised hardware then need to take into account the specifics of the hardware platform, which requires novel training algorithms and accurate models of the hardware, since they cannot be abstracted as a general-purpose computing platform. In this work, we present a bottom-up approach to train neural networks for hardware based on spiking neurons and synapses built on ferroelectric capacitor (FeCap) and Resistive switching non-volatile devices (RRAM) respectively. In contrast to the more common approach of designing hardware to fit existing abstract neuron or synapse models, this approach starts with compact models of the physical device to model the computational primitive of the neurons. Based on these models, a training algorithm is developed that can reliably backpropagate through these physical models, even when applying common hardware limitations, such as stochasticity, variability, and low bit precision. The training algorithm is then tested on a spatio-temporal dataset with a network composed of quantized synapses based on RRAM and ferroelectric leaky integrate-and-fire (FeLIF) neurons. The performance of the network is compared with different networks composed of LIF neurons. The results of the experiments show the potential advantage of using BRUNO to train networks with FeLIF neurons, by achieving a reduction in both time and memory for detecting spatio-temporal patterns with quantized synapses.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Quantization of Deep Neural Networks to facilitate self-correction of
weights on Phase Change Memory-based analog hardware [0.0]
We develop an algorithm to approximate a set of multiplicative weights.
These weights aim to represent the original network's weights with minimal loss in performance.
Our results demonstrate that, when paired with an on-chip pulse generator, our self-correcting neural network performs comparably to those trained with analog-aware algorithms.
arXiv Detail & Related papers (2023-09-30T10:47:25Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Neural net modeling of equilibria in NSTX-U [0.0]
We develop two neural networks relevant to equilibrium and shape control modeling.
Networks include Eqnet, a free-boundary equilibrium solver trained on the EFIT01 reconstruction algorithm, and Pertnet, which is trained on the Gspert code.
We report strong performance for both networks indicating that these models could reliably be used within closed-loop simulations.
arXiv Detail & Related papers (2022-02-28T16:09:58Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Benchmarking Deep Spiking Neural Networks on Neuromorphic Hardware [0.0]
We use the methodology of converting pre-trained non-spiking to spiking neural networks to evaluate the performance loss and measure the energy-per-inference.
We demonstrate that the conversion loss is usually below one percent for digital implementations, and moderately higher for analog systems with the benefit of much lower energy-per-inference costs.
arXiv Detail & Related papers (2020-04-03T16:25:49Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.