Flexible MOF Generation with Torsion-Aware Flow Matching
- URL: http://arxiv.org/abs/2505.17914v1
- Date: Fri, 23 May 2025 13:56:30 GMT
- Title: Flexible MOF Generation with Torsion-Aware Flow Matching
- Authors: Nayoung Kim, Seongsu Kim, Sungsoo Ahn,
- Abstract summary: We propose a two-stage de novo MOF generation framework.<n>First, we train a SMILES-based autoregressive model to generate novel metal and organic building blocks.<n>Second, we introduce a flow-matching model that predicts translations, rotations, and torsional angles to assemble flexible blocks into valid 3D frameworks.
- Score: 13.602789307095415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing metal-organic frameworks (MOFs) with novel chemistries is a long-standing challenge due to their large combinatorial space and the complex 3D arrangements of building blocks. While recent deep generative models have enabled scalable MOF generation, they assume (1) a fixed set of building blocks and (2) known ground-truth local block-wise 3D coordinates. However, this limits their ability to (1) design novel MOFs and (2) generate the structure using novel building blocks. We propose a two-stage de novo MOF generation framework that overcomes these limitations by modeling both chemical and geometric degrees of freedom. First, we train a SMILES-based autoregressive model to generate novel metal and organic building blocks, paired with cheminformatics for 3D structure initialization. Second, we introduce a flow-matching model that predicts translations, rotations, and torsional angles to assemble flexible blocks into valid 3D frameworks. Our experiments demonstrate improved reconstruction accuracy, the generation of valid, novel, and unique MOFs, and the ability of our model to create novel building blocks.
Related papers
- MOFGPT: Generative Design of Metal-Organic Frameworks using Language Models [5.417632175667162]
Metal-Organic Frameworks (MOFs) with application-specific properties remain a central challenge in materials chemistry.<n>We present a reinforcement learning-enhanced, transformer-based framework for the de novo design of MOFs.<n>By integrating property feedback into sequence generation, our method drives the model toward synthesizable, topologically valid MOFs.
arXiv Detail & Related papers (2025-05-30T20:09:11Z) - Building-Block Aware Generative Modeling for 3D Crystals of Metal Organic Frameworks [10.094982948231923]
Metal-organic frameworks (MOFs) marry inorganic nodes, organic edges, and topological nets into programmable porous crystals.<n>Existing models either recycle known building blocks or are restricted to small unit cells.<n>We introduce Building-Block-Aware MOF Diffusion, an SE(3)-equivariant diffusion model that learns 3D all-atom representations of individual building blocks.
arXiv Detail & Related papers (2025-05-13T13:02:28Z) - Model as a Game: On Numerical and Spatial Consistency for Generative Games [117.36098212829766]
We revisit the paradigm of generative games to explore what truly constitutes a Model as a Game (MaaG) with a well-developed mechanism.<n>Based on the DiT architecture, we design two specialized modules: (1) a numerical module that integrates a LogicNet to determine event triggers, with calculations processed externally as conditions for image generation; and (2) a spatial module that maintains a map of explored areas, retrieving location-specific information during generation and linking new observations to ensure continuity.
arXiv Detail & Related papers (2025-03-27T05:46:15Z) - MOFFlow: Flow Matching for Structure Prediction of Metal-Organic Frameworks [42.61784133509237]
Metal-organic frameworks (MOFs) are a class of crystalline materials with promising applications in many areas such as carbon capture and drug delivery.<n>Existing approaches, including ab initio calculations and even deep generative models, struggle with the complexity of MOF structures due to the large number of atoms in the unit cells.<n>We introduce MOFFlow, the first deep generative model tailored for MOF structure prediction.
arXiv Detail & Related papers (2024-10-07T13:51:58Z) - L3GO: Language Agents with Chain-of-3D-Thoughts for Generating
Unconventional Objects [53.4874127399702]
We propose a language agent with chain-of-3D-thoughts (L3GO), an inference-time approach that can reason about part-based 3D mesh generation.
We develop a new benchmark, Unconventionally Feasible Objects (UFO), as well as SimpleBlenv, a wrapper environment built on top of Blender.
Our approach surpasses the standard GPT-4 and other language agents for 3D mesh generation on ShapeNet.
arXiv Detail & Related papers (2024-02-14T09:51:05Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design [4.819734936375677]
Metal-organic frameworks (MOFs) are of immense interest in applications such as gas storage and carbon capture.
We propose MOFDiff: a coarse-grained (CG) diffusion model that generates CG MOF structures.
We evaluate our model's capability to generate valid and novel MOF structures and its effectiveness in designing outstanding MOF materials.
arXiv Detail & Related papers (2023-10-16T18:00:15Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
We introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3mathrmD$ rigid motions.
Our family of FoldFlowgenerative models offers several advantages over previous approaches to the generative modeling of proteins.
arXiv Detail & Related papers (2023-10-03T19:24:24Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - MOFormer: Self-Supervised Transformer model for Metal-Organic Framework
Property Prediction [7.367477168940467]
Metal-Organic Frameworks (MOFs) are materials with a high degree of porosity that can be used for applications in energy storage, water desalination, gas storage, and gas separation.
Finding the optimal MOFs for specific applications requires an efficient and accurate search over an enormous number of potential candidates.
We propose a structure-agnostic deep learning method based on the Transformer model, named as MOFormer, for property predictions of MOFs.
arXiv Detail & Related papers (2022-10-25T17:29:42Z) - Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model
for Protein Design [70.27706384570723]
We propose Fold2Seq, a novel framework for designing protein sequences conditioned on a specific target fold.
We show improved or comparable performance of Fold2Seq in terms of speed, coverage, and reliability for sequence design.
The unique advantages of fold-based Fold2Seq, in comparison to a structure-based deep model and RosettaDesign, become more evident on three additional real-world challenges.
arXiv Detail & Related papers (2021-06-24T14:34:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.