Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
- URL: http://arxiv.org/abs/2505.17994v1
- Date: Fri, 23 May 2025 14:59:44 GMT
- Title: Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
- Authors: Zhihua Liu, Amrutha Saseendran, Lei Tong, Xilin He, Fariba Yousefi, Nikolay Burlutskiy, Dino Oglic, Tom Diethe, Philip Teare, Huiyu Zhou, Chen Jin,
- Abstract summary: We propose a novel training-free visual concept prompt learning approach for open-set language grounded segmentation.<n>The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results.
- Score: 15.67584465842852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-set image segmentation poses a significant challenge because existing methods often demand extensive training or fine-tuning and generally struggle to segment unified objects consistently across diverse text reference expressions. Motivated by this, we propose Segment Anyword, a novel training-free visual concept prompt learning approach for open-set language grounded segmentation that relies on token-level cross-attention maps from a frozen diffusion model to produce segmentation surrogates or mask prompts, which are then refined into targeted object masks. Initial prompts typically lack coherence and consistency as the complexity of the image-text increases, resulting in suboptimal mask fragments. To tackle this issue, we further introduce a novel linguistic-guided visual prompt regularization that binds and clusters visual prompts based on sentence dependency and syntactic structural information, enabling the extraction of robust, noise-tolerant mask prompts, and significant improvements in segmentation accuracy. The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results of 52.5 (+6.8 relative) mIoU on Pascal Context 59, 67.73 (+25.73 relative) cIoU on gRefCOCO, and 67.4 (+1.1 relative to fine-tuned methods) mIoU on GranDf, which is the most complex open-set grounded segmentation task in the field.
Related papers
- LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance [56.474856189865946]
Large multi-modal models (LMMs) struggle with inaccurate segmentation and hallucinated comprehension.<n>We propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation.<n>LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks.
arXiv Detail & Related papers (2025-07-08T07:46:26Z) - BiPrompt-SAM: Enhancing Image Segmentation via Explicit Selection between Point and Text Prompts [2.7218660375779513]
BiPrompt-SAM is a novel dual-modal prompt segmentation framework.<n>It fuses spatial precision and semantic context without complex model modifications.<n>It achieves strong zero-shot performance on the Endovis17 medical dataset.
arXiv Detail & Related papers (2025-03-25T15:38:55Z) - Think Before You Segment: High-Quality Reasoning Segmentation with GPT Chain of Thoughts [64.93416171745693]
ThinkFirst is a training-free reasoning segmentation framework.<n>Our approach allows GPT-4o or other powerful MLLMs to generate a detailed, chain-of-thought description of an image.<n>This summarized description is then passed to a language-instructed segmentation assistant to aid the segmentation process.
arXiv Detail & Related papers (2025-03-10T16:26:11Z) - Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision [87.15580604023555]
Unpair-Seg is a novel weakly-supervised open-vocabulary segmentation framework.
It learns from unpaired image-mask and image-text pairs, which can be independently and efficiently collected.
It achieves 14.6% and 19.5% mIoU on the ADE-847 and PASCAL Context-459 datasets.
arXiv Detail & Related papers (2024-02-14T06:01:44Z) - Towards Generalizable Referring Image Segmentation via Target Prompt and
Visual Coherence [48.659338080020746]
Referring image segmentation (RIS) aims to segment objects in an image conditioning on free-from text descriptions.
We present a novel RIS approach, which substantially improves the generalization ability by addressing the two dilemmas mentioned above.
Specially, to deal with unconstrained texts, we propose to boost a given expression with an explicit and crucial prompt, which complements the expression in a unified context.
arXiv Detail & Related papers (2023-12-01T09:31:24Z) - Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation [29.43462426812185]
We propose a paradigm change by shifting from a per-pixel classification to a mask classification.
Our mask-based method, Mask2Anomaly, demonstrates the feasibility of integrating a mask-classification architecture.
By comprehensive qualitative and qualitative evaluation, we show Mask2Anomaly achieves new state-of-the-art results.
arXiv Detail & Related papers (2023-09-08T20:07:18Z) - Segment Everything Everywhere All at Once [124.90835636901096]
We present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image.
We propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks.
We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks.
arXiv Detail & Related papers (2023-04-13T17:59:40Z) - A Simple Framework for Open-Vocabulary Segmentation and Detection [85.21641508535679]
We present OpenSeeD, a simple Open-vocabulary and Detection framework that jointly learns from different segmentation and detection datasets.
We first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them.
After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection.
arXiv Detail & Related papers (2023-03-14T17:58:34Z) - Masked Supervised Learning for Semantic Segmentation [5.177947445379688]
Masked Supervised Learning (MaskSup) is an effective single-stage learning paradigm that models both short- and long-range context.
We show that the proposed method is computationally efficient, yielding an improved performance by 10% on the mean intersection-over-union (mIoU)
arXiv Detail & Related papers (2022-10-03T13:30:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.