What Do You Need for Diverse Trajectory Stitching in Diffusion Planning?
- URL: http://arxiv.org/abs/2505.18083v1
- Date: Fri, 23 May 2025 16:41:08 GMT
- Title: What Do You Need for Diverse Trajectory Stitching in Diffusion Planning?
- Authors: Quentin Clark, Florian Shkurti,
- Abstract summary: In planning, stitching is an ability of algorithms to piece together sub-trajectories of data they are trained on to generate new and diverse behaviours.<n>Recent generative behavioural cloning (BC) methods have shown proficiency at stitching.<n>Main factors behind this are poorly understood, hindering the development of new algorithms that can reliably stitch.
- Score: 15.797944308366812
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In planning, stitching is an ability of algorithms to piece together sub-trajectories of data they are trained on to generate new and diverse behaviours. While stitching is historically a strength of offline reinforcement learning, recent generative behavioural cloning (BC) methods have also shown proficiency at stitching. However, the main factors behind this are poorly understood, hindering the development of new algorithms that can reliably stitch. Focusing on diffusion planners trained via BC, we find two properties are needed to compose: \emph{positional equivariance} and \emph{local receptiveness}. We use these two properties to explain architecture, data, and inference choices in existing generative BC methods based on diffusion planning, including replanning frequency, data augmentation, and data scaling. Experimental comparisions show that (1) while locality is more important than positional equivariance in creating a diffusion planner capable of composition, both are crucial (2) enabling these properties through relatively simple architecture choices can be competitive with more computationally expensive methods such as replanning or scaling data, and (3) simple inpainting-based guidance can guide architecturally compositional models to enable generalization in goal-conditioned settings.
Related papers
- Generative Trajectory Stitching through Diffusion Composition [29.997765496994457]
CompDiffuser is a novel generative approach that can solve new tasks by learning to compositionally stitch together shorter trajectory chunks from previously seen tasks.<n>We conduct experiments on benchmark tasks of various difficulties, covering different environment sizes, agent state dimension, trajectory types, training data quality, and show that CompDiffuser significantly outperforms existing methods.
arXiv Detail & Related papers (2025-03-07T05:22:52Z) - TabSeq: A Framework for Deep Learning on Tabular Data via Sequential Ordering [5.946579489162407]
This work introduces TabSeq, a novel framework for the sequential ordering of features.
Finding the optimum sequence order for such features could improve the deep learning models' learning process.
arXiv Detail & Related papers (2024-10-17T04:10:36Z) - LayoutDiffusion: Improving Graphic Layout Generation by Discrete
Diffusion Probabilistic Models [50.73105631853759]
We present a novel generative model named LayoutDiffusion for automatic layout generation.
It learns to reverse a mild forward process, in which layouts become increasingly chaotic with the growth of forward steps.
It enables two conditional layout generation tasks in a plug-and-play manner without re-training and achieves better performance than existing methods.
arXiv Detail & Related papers (2023-03-21T04:41:02Z) - PDSketch: Integrated Planning Domain Programming and Learning [86.07442931141637]
We present a new domain definition language, named PDSketch.
It allows users to flexibly define high-level structures in the transition models.
Details of the transition model will be filled in by trainable neural networks.
arXiv Detail & Related papers (2023-03-09T18:54:12Z) - Exploring explicit coarse-grained structure in artificial neural
networks [0.0]
We propose to employ the hierarchical coarse-grained structure in the artificial neural networks explicitly to improve the interpretability without degrading performance.
One is a neural network called TaylorNet, which aims to approximate the general mapping from input data to output result in terms of Taylor series directly.
The other is a new setup for data distillation, which can perform multi-level abstraction of the input dataset and generate new data.
arXiv Detail & Related papers (2022-11-03T13:06:37Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo
Matching Networks [3.7384509727711923]
We introduce a pairwise feature for deep stereo matching networks, named LSP (Local Similarity Pattern)
Through explicitly revealing the neighbor relationships, LSP contains rich structural information, which can be leveraged to aid for more discriminative feature description.
Secondly, we design a dynamic self-reassembling refinement strategy and apply it to the cost distribution and the disparity map respectively.
arXiv Detail & Related papers (2021-12-02T06:52:54Z) - Learning Augmentation Distributions using Transformed Risk Minimization [47.236227685707526]
We propose a new emphTransformed Risk Minimization (TRM) framework as an extension of classical risk minimization.
As a key application, we focus on learning augmentations to improve classification performance with a given class of predictors.
arXiv Detail & Related papers (2021-11-16T02:07:20Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved.
The proposed algorithm has the same complexity as the original $t$-SNE to embed new items, and a lower one when considering the embedding of a dataset sliced into sub-pieces.
arXiv Detail & Related papers (2021-09-22T06:45:37Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
We propose a powerful and equivariant message-passing framework based on two ideas.
First, we propagate a one-hot encoding of the nodes, in addition to the features, in order to learn a local context matrix around each node.
Second, we propose methods for the parametrization of the message and update functions that ensure permutation equivariance.
arXiv Detail & Related papers (2020-06-26T17:15:16Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.