Improving Generative Inverse Design of Rectangular Patch Antennas with Test Time Optimization
- URL: http://arxiv.org/abs/2505.18188v2
- Date: Tue, 27 May 2025 00:40:18 GMT
- Title: Improving Generative Inverse Design of Rectangular Patch Antennas with Test Time Optimization
- Authors: Beck LaBash, Shahriar Khushrushahi, Fabian Ruehle,
- Abstract summary: We propose a two-stage deep learning framework for the inverse design of rectangular patch antennas.<n>Our approach generalizes naturally to different design criteria, and can be easily adapted to more complex geometric design spaces.
- Score: 3.9599054392856483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a two-stage deep learning framework for the inverse design of rectangular patch antennas. Our approach leverages generative modeling to learn a latent representation of antenna frequency response curves and conditions a subsequent generative model on these responses to produce feasible antenna geometries. We further demonstrate that leveraging search and optimization techniques at test-time improves the accuracy of the generated designs and enables consideration of auxiliary objectives such as manufacturability. Our approach generalizes naturally to different design criteria, and can be easily adapted to more complex geometric design spaces.
Related papers
- Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
We address the synthesis of a compliant cross-hinge mechanism capable of large angular strokes.<n>We formulate a multi-objective optimization problem based on kinetostatic performance measures.
arXiv Detail & Related papers (2025-04-23T06:29:10Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.<n>Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - Generative Aerodynamic Design with Diffusion Probabilistic Models [0.7373617024876725]
We show that generative models have the potential to provide geometries by generalizing geometries over a large dataset of simulations.
In particular, we leverage diffusion probabilistic models trained on XFOIL simulations to synthesize two-dimensional airfoil geometries conditioned on given aerodynamic features and constraints.
We show that the models are able to generate diverse candidate designs for identical requirements and constraints, effectively exploring the design space to provide multiple starting points to optimization procedures.
arXiv Detail & Related papers (2024-09-20T08:38:36Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - A Machine Learning Generative Method for Automating Antenna Design and
Optimization [9.438718097561061]
We introduce a flexible geometric scheme with the concept of mesh network that can form any arbitrary shape by connecting different nodes.
For a dual resonance antenna design with wide bandwidth, our proposed method is in par with Trust Region Framework and much better than the other mature machine learning algorithms.
arXiv Detail & Related papers (2022-02-28T21:30:37Z) - Early-Phase Performance-Driven Design using Generative Models [0.0]
This research introduces a novel method for performance-driven geometry generation that can afford interaction directly in the 3d modeling environment.
The method uses Machine Learning techniques to train a generative model offline.
By navigating the generative model's latent space, geometries with the desired characteristics can be quickly generated.
arXiv Detail & Related papers (2021-07-19T01:25:11Z) - HyperHyperNetworks for the Design of Antenna Arrays [91.3755431537592]
We present deep learning methods for the design of arrays and single instances of small antennas.
In the case of a single antenna, the solution is based on a composite neural network that combines a simulation network, a hypernetwork, and a refinement network.
The learning objective is based on measuring the similarity of the obtained radiation pattern to the desired one.
arXiv Detail & Related papers (2021-05-09T05:21:28Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Machine Learning-aided Design of Thinned Antenna Arrays for Optimized
Network Level Performance [19.17059890143665]
We propose a Machine Learning framework that enables a simulation-based optimization of the antenna design.
We show how learning methods are able to emulate a complex simulator with a modest dataset.
Overall, our results show that the proposed methodology can be successfully applied to the optimization of thinned antenna arrays.
arXiv Detail & Related papers (2020-01-25T15:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.