Rehabilitation Exercise Quality Assessment and Feedback Generation Using Large Language Models with Prompt Engineering
- URL: http://arxiv.org/abs/2505.18412v1
- Date: Fri, 23 May 2025 22:39:10 GMT
- Title: Rehabilitation Exercise Quality Assessment and Feedback Generation Using Large Language Models with Prompt Engineering
- Authors: Jessica Tang, Ali Abedi, Tracey J. F. Colella, Shehroz S. Khan,
- Abstract summary: Exercise-based rehabilitation improves quality of life and reduces morbidity, mortality, and rehospitalization.<n>Virtual platforms enable patients to complete prescribed exercises at home, while AI algorithms analyze performance, deliver feedback, and update clinicians.<n>We propose a new method in which exercise-specific features are extracted from the skeletal joints of patients performing rehabilitation exercises and fed into pre-trained language models.
- Score: 1.9827390755712084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exercise-based rehabilitation improves quality of life and reduces morbidity, mortality, and rehospitalization, though transportation constraints and staff shortages lead to high dropout rates from rehabilitation programs. Virtual platforms enable patients to complete prescribed exercises at home, while AI algorithms analyze performance, deliver feedback, and update clinicians. Although many studies have developed machine learning and deep learning models for exercise quality assessment, few have explored the use of large language models (LLMs) for feedback and are limited by the lack of rehabilitation datasets containing textual feedback. In this paper, we propose a new method in which exercise-specific features are extracted from the skeletal joints of patients performing rehabilitation exercises and fed into pre-trained LLMs. Using a range of prompting techniques, such as zero-shot, few-shot, chain-of-thought, and role-play prompting, LLMs are leveraged to evaluate exercise quality and provide feedback in natural language to help patients improve their movements. The method was evaluated through extensive experiments on two publicly available rehabilitation exercise assessment datasets (UI-PRMD and REHAB24-6) and showed promising results in exercise assessment, reasoning, and feedback generation. This approach can be integrated into virtual rehabilitation platforms to help patients perform exercises correctly, support recovery, and improve health outcomes.
Related papers
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [92.93521294357058]
Narrative therapy helps individuals transform problematic life stories into empowering alternatives.<n>Current approaches lack realism in specialized psychotherapy and fail to capture therapeutic progression over time.<n>Int (Interactive Narrative Therapist) simulates expert narrative therapists by planning therapeutic stages, guiding reflection levels, and generating contextually appropriate expert-like responses.
arXiv Detail & Related papers (2025-07-27T11:52:09Z) - GEMeX-ThinkVG: Towards Thinking with Visual Grounding in Medical VQA via Reinforcement Learning [50.94508930739623]
Medical visual question answering aims to support clinical decision-making by enabling models to answer natural language questions based on medical images.<n>Current methods still suffer from limited answer reliability and poor interpretability, impairing the ability of clinicians and patients to understand and trust model-generated answers.<n>This work first proposes a Thinking with Visual Grounding dataset wherein the answer generation is decomposed into intermediate reasoning steps.<n>We introduce a novel verifiable reward mechanism for reinforcement learning to guide post-training, improving the alignment between the model's reasoning process and its final answer.
arXiv Detail & Related papers (2025-06-22T08:09:58Z) - Skeleton-Based Transformer for Classification of Errors and Better Feedback in Low Back Pain Physical Rehabilitation Exercises [0.9094127664014627]
In recent years, there has been great progress in quality assessment of physical rehabilitation exercises.<n>Most of them only provide a binary classification if the performance is correct or incorrect, and a few provide a continuous score.<n>In this work, we propose an algorithm for error classification of rehabilitation exercises, thus making the first step toward more detailed feedback to patients.
arXiv Detail & Related papers (2025-03-28T10:30:39Z) - Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
We propose a method that integrates information from transcribed verbal feedback and corresponding surgical video to predict feedback effectiveness.
Our findings show that both transcribed feedback and surgical video are individually predictive of trainee behavior changes.
Our results demonstrate the potential of multi-modal learning to advance the automated assessment of surgical feedback.
arXiv Detail & Related papers (2024-11-17T00:13:00Z) - Rehabilitation Exercise Quality Assessment through Supervised Contrastive Learning with Hard and Soft Negatives [2.166000001057538]
Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates.
These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets.
This paper introduces a novel supervised contrastive learning framework with hard and soft negative samples to train a single model applicable to all exercise types.
arXiv Detail & Related papers (2024-03-05T08:38:25Z) - Cross-Modal Video to Body-joints Augmentation for Rehabilitation
Exercise Quality Assessment [3.544570529705401]
Exercise-based rehabilitation programs have been shown to enhance quality of life and reduce mortality and rehospitalizations.
AI-driven virtual rehabilitation programs enable patients to complete exercises independently at home while AI algorithms can analyze exercise data to provide feedback to patients and report their progress to clinicians.
This paper introduces a novel approach to assessing the quality of rehabilitation exercises using RGB video. Sequences of skeletal body joints are extracted from consecutive RGB video frames and analyzed by many-to-one sequential neural networks to evaluate exercise quality.
arXiv Detail & Related papers (2023-06-15T23:23:35Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - Rehabilitation Exercise Repetition Segmentation and Counting using
Skeletal Body Joints [6.918076156491651]
This paper presents a novel approach for segmenting and counting the repetitions of rehabilitation exercises performed by patients.
Skeletal body joints can be acquired through depth cameras or computer vision techniques applied to RGB videos of patients.
Various sequential neural networks are designed to analyze the sequences of skeletal body joints and perform repetition segmentation and counting.
arXiv Detail & Related papers (2023-04-19T15:22:15Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
Strokes are the leading cause of adult disability in the United States.
Brain-Computer Interfaces (BCIs) help the patient either restore neurologic pathways or effectively communicate with an electronic prosthetic.
The various machine learning techniques and algorithms that are addressed and combined with BCIs technology show that the use of BCIs for stroke treatment is a promising and rapidly expanding field.
arXiv Detail & Related papers (2020-08-06T19:50:29Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z) - Opportunities of a Machine Learning-based Decision Support System for
Stroke Rehabilitation Assessment [64.52563354823711]
Rehabilitation assessment is critical to determine an adequate intervention for a patient.
Current practices of assessment mainly rely on therapist's experience, and assessment is infrequently executed due to the limited availability of a therapist.
We developed an intelligent decision support system that can identify salient features of assessment using reinforcement learning.
arXiv Detail & Related papers (2020-02-27T17:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.