Think Before You Accept: Semantic Reflective Verification for Faster Speculative Decoding
- URL: http://arxiv.org/abs/2505.18629v1
- Date: Sat, 24 May 2025 10:26:27 GMT
- Title: Think Before You Accept: Semantic Reflective Verification for Faster Speculative Decoding
- Authors: Yixuan Wang, Yijun Liu, Shiyu ji, Yuzhuang Xu, Yang Xu, Qingfu Zhu, Wanxiang Che,
- Abstract summary: Speculative decoding accelerates inference by generating multiple draft tokens using a lightweight model and verifying them in parallel.<n>Existing verification methods rely heavily on distributional consistency while overlooking semantic correctness.<n>We propose Reflective Verification, a training-free and semantics-aware approach that achieves a better trade-off between correctness and efficiency.
- Score: 48.52389201779425
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs) suffer from high inference latency due to the auto-regressive decoding process. Speculative decoding accelerates inference by generating multiple draft tokens using a lightweight model and verifying them in parallel. However, existing verification methods rely heavily on distributional consistency while overlooking semantic correctness, thereby limiting the potential speedup of speculative decoding. While some methods employ additional models for relaxed verification of draft tokens, they often fail to generalize effectively to more diverse or open-domain settings. In this work, we propose Reflective Verification, a training-free and semantics-aware approach that achieves a better trade-off between correctness and efficiency. Specifically, we leverage the inherent reflective capacity of LLMs to semantically assess the correctness of draft tokens in parallel during verification. Using prompt-based probing, we obtain both the original and reflective distributions of draft tokens in a single forward pass. The fusion of these distributions enables semantic-level verification of draft tokens that incorporates both consistency and correctness. Experiments across multiple domain benchmarks and model scales demonstrate that our method significantly increases the acceptance length of draft tokens without compromising model performance. Furthermore, we find that the proposed Reflective Verification is orthogonal to existing statistical verification methods, and their combination yields additional 5$\sim$15\% improvements in decoding speed.
Related papers
- Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
We introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel.<n>APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
arXiv Detail & Related papers (2025-05-31T06:10:10Z) - Traversal Verification for Speculative Tree Decoding [9.534492618180085]
Speculative decoding is a promising approach for accelerating large language models.<n>This paper introduces Traversal Verification, a novel speculative decoding algorithm.<n>We show that our method consistently improves acceptance length and throughput over existing methods.
arXiv Detail & Related papers (2025-05-18T12:51:55Z) - Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE [15.003006630308517]
Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens.<n>We propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions.<n>Our method significantly boosts prediction accuracy and achieves higher inference speedups.
arXiv Detail & Related papers (2025-02-10T09:24:06Z) - ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
We present ParallelSpec, an alternative to auto-regressive drafting strategies in state-of-the-art speculative decoding approaches.
In contrast to auto-regressive drafting in the speculative stage, we train a parallel drafter to serve as an efficient speculative model.
arXiv Detail & Related papers (2024-10-08T01:05:08Z) - PEARL: Parallel Speculative Decoding with Adaptive Draft Length [12.166703341906242]
We propose a conceptually simple, flexible, and general framework to boost speculative decoding, namely Parallel spEculative decoding with Adaptive dRaft Length (PEARL)<n>PEARL proposes pre-verify to verify the first draft token in advance during the drafting phase, and post-verify to generate more draft tokens during the verification phase.<n> Experiments on various text generation benchmarks demonstrate the effectiveness of our PEARL, leading to a superior speed up performance up to 4.43$times$ and 1.50$times$, compared to auto-regressive decoding and vanilla speculative decoding, respectively.
arXiv Detail & Related papers (2024-08-13T08:32:06Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [55.0194604505437]
Speculative decoding has emerged as a widely adopted method to accelerate large language model inference.<n>This paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences.
arXiv Detail & Related papers (2024-08-10T21:24:25Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - Block Verification Accelerates Speculative Decoding [23.764655044837113]
Speculative decoding uses a fast model to draft a block of tokens which are verified in parallel by the target model.<n>In prior works, draft verification is performed independently token-by-token.<n>We propose Block Verification, a simple draft verification algorithm that verifies the entire block jointly.
arXiv Detail & Related papers (2024-03-15T16:28:22Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming.
One way to speed them up is speculative decoding, which generates candidate segments from a fast draft model that is then verified in parallel by the target model.
This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification.
We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model.
arXiv Detail & Related papers (2024-01-12T17:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.