FusionTrack: End-to-End Multi-Object Tracking in Arbitrary Multi-View Environment
- URL: http://arxiv.org/abs/2505.18727v1
- Date: Sat, 24 May 2025 14:51:19 GMT
- Title: FusionTrack: End-to-End Multi-Object Tracking in Arbitrary Multi-View Environment
- Authors: Xiaohe Li, Pengfei Li, Zide Fan, Ying Geng, Fangli Mou, Haohua Wu, Yunping Ge,
- Abstract summary: We propose an end-to-end framework that reasonably integrates tracking and re-identification to leverage multi-view information for robust trajectory association.<n>Experiments on our MDMOT and other benchmark datasets demonstrate that FusionTrack achieves state-of-the-art performance in both single-view and multi-view tracking.
- Score: 7.5152380894919055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view multi-object tracking (MVMOT) has found widespread applications in intelligent transportation, surveillance systems, and urban management. However, existing studies rarely address genuinely free-viewpoint MVMOT systems, which could significantly enhance the flexibility and scalability of cooperative tracking systems. To bridge this gap, we first construct the Multi-Drone Multi-Object Tracking (MDMOT) dataset, captured by mobile drone swarms across diverse real-world scenarios, initially establishing the first benchmark for multi-object tracking in arbitrary multi-view environment. Building upon this foundation, we propose \textbf{FusionTrack}, an end-to-end framework that reasonably integrates tracking and re-identification to leverage multi-view information for robust trajectory association. Extensive experiments on our MDMOT and other benchmark datasets demonstrate that FusionTrack achieves state-of-the-art performance in both single-view and multi-view tracking.
Related papers
- CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking [68.24998698508344]
We introduce CAMEL, a novel association module for Context-Aware Multi-Cue ExpLoitation.<n>Unlike end-to-end detection-by-tracking approaches, our method remains lightweight and fast to train while being able to leverage external off-the-shelf models.<n>Our proposed online tracking pipeline, CAMELTrack, achieves state-of-the-art performance on multiple tracking benchmarks.
arXiv Detail & Related papers (2025-05-02T13:26:23Z) - MUST: The First Dataset and Unified Framework for Multispectral UAV Single Object Tracking [17.96400810834486]
We introduce the first large-scale Multispectral UAV Single Object Tracking dataset (MUST)<n>MUST includes 250 video sequences spanning diverse environments and challenges.<n>We also propose a novel tracking framework, UNTrack, which encodes unified spectral, spatial, and temporal features from spectrum prompts.
arXiv Detail & Related papers (2025-03-22T08:47:28Z) - MCTR: Multi Camera Tracking Transformer [45.66952089591361]
Multi-Camera Tracking tRansformer (MCTR) is a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras.
MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view.
The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating local information from the view-specific detection embeddings.
arXiv Detail & Related papers (2024-08-23T17:37:03Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.