MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.18823v1
- Date: Sat, 24 May 2025 18:48:29 GMT
- Title: MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation
- Authors: Libin Lan, Yanxin Li, Xiaojuan Liu, Juan Zhou, Jianxun Zhang, Nannan Huang, Yudong Zhang,
- Abstract summary: Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks.<n>We propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms.<n>The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images.<n>Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution.
- Score: 7.826754189244901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks. However, CNN-based methods struggle to effectively capture global contextual information due to the inherent limitations of convolution operations. Meanwhile, Transformer-based methods suffer from insufficient local feature modeling and face challenges related to the high computational complexity caused by the self-attention mechanism. To address these limitations, we propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms. The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images while modeling long-range dependencies with low computational complexity. Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution using a lightweight structure. Extensive experiments conducted on benchmark datasets covering three imaging modalities demonstrate that the proposed MSLAU-Net outperforms other state-of-the-art methods on nearly all evaluation metrics, validating the superiority, effectiveness, and robustness of our approach. Our code is available at https://github.com/Monsoon49/MSLAU-Net.
Related papers
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - CFMD: Dynamic Cross-layer Feature Fusion for Salient Object Detection [7.262250906929891]
Cross-layer feature pyramid networks (CFPNs) have achieved notable progress in multi-scale feature fusion and boundary detail preservation for salient object detection.<n>To address these challenges, we propose CFMD, a novel cross-layer feature pyramid network that introduces two key innovations.<n>First, we design a context-aware feature aggregation module (CFLMA), which incorporates the state-of-the-art Mamba architecture to construct a dynamic weight distribution mechanism.<n>Second, we introduce an adaptive dynamic upsampling unit (CFLMD) that preserves spatial details during resolution recovery.
arXiv Detail & Related papers (2025-04-02T03:22:36Z) - MobileUNETR: A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation [0.12499537119440242]
Skin cancer segmentation poses a significant challenge in medical image analysis.
MobileUNETR aims to overcome the performance constraints associated with both CNNs and Transformers.
MobileUNETR achieves superior performance with 3 million parameters and a computational complexity of 1.3 GFLOP.
arXiv Detail & Related papers (2024-09-04T20:23:37Z) - Semi-Mamba-UNet: Pixel-Level Contrastive and Pixel-Level Cross-Supervised Visual Mamba-based UNet for Semi-Supervised Medical Image Segmentation [11.637738540262797]
This study introduces Semi-Mamba-UNet, which integrates a purely visual Mamba-based encoder-decoder architecture with a conventional CNN-based UNet into a semi-supervised learning framework.
This innovative SSL approach leverages both networks to generate pseudo-labels and cross-supervise one another at the pixel level simultaneously.
We introduce a self-supervised pixel-level contrastive learning strategy that employs a pair of projectors to enhance the feature learning capabilities further.
arXiv Detail & Related papers (2024-02-11T17:09:21Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [46.44049019428938]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.<n>LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.<n>We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - A Data-scalable Transformer for Medical Image Segmentation:
Architecture, Model Efficiency, and Benchmark [45.543140413399506]
MedFormer is a data-scalable Transformer designed for generalizable 3D medical image segmentation.
Our approach incorporates three key elements: a desirable inductive bias, hierarchical modeling with linear-complexity attention, and multi-scale feature fusion.
arXiv Detail & Related papers (2022-02-28T22:59:42Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Global Filter Networks for Image Classification [90.81352483076323]
We present a conceptually simple yet computationally efficient architecture that learns long-term spatial dependencies in the frequency domain with log-linear complexity.
Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness.
arXiv Detail & Related papers (2021-07-01T17:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.