StandUp4AI: A New Multilingual Dataset for Humor Detection in Stand-up Comedy Videos
- URL: http://arxiv.org/abs/2505.18903v1
- Date: Sat, 24 May 2025 23:31:52 GMT
- Title: StandUp4AI: A New Multilingual Dataset for Humor Detection in Stand-up Comedy Videos
- Authors: Valentin Barriere, Nahuel Gomez, Leo Hemamou, Sofia Callejas, Brian Ravenet,
- Abstract summary: We propose a new multimodal dataset of stand-up comedies, in seven languages.<n>The whole dataset is automatically annotated in laughter.<n>We propose a method to enhance the automatic laughter detection based on Audio Speech Recognition errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aiming towards improving current computational models of humor detection, we propose a new multimodal dataset of stand-up comedies, in seven languages: English, French, Spanish, Italian, Portuguese, Hungarian and Czech. Our dataset of more than 330 hours, is at the time of writing the biggest available for this type of task, and the most diverse. The whole dataset is automatically annotated in laughter (from the audience), and the subpart left for model validation is manually annotated. Contrary to contemporary approaches, we do not frame the task of humor detection as a binary sequence classification, but as word-level sequence labeling, in order to take into account all the context of the sequence and to capture the continuous joke tagging mechanism typically occurring in natural conversations. As par with unimodal baselines results, we propose a method for e propose a method to enhance the automatic laughter detection based on Audio Speech Recognition errors. Our code and data are available online: https://tinyurl.com/EMNLPHumourStandUpPublic
Related papers
- MAVOS-DD: Multilingual Audio-Video Open-Set Deepfake Detection Benchmark [108.46287432944392]
We present the first large-scale open-set benchmark for multilingual audio-video deepfake detection.<n>Our dataset comprises over 250 hours of real and fake videos across eight languages.<n>For each language, the fake videos are generated with seven distinct deepfake generation models.
arXiv Detail & Related papers (2025-05-16T10:42:30Z) - Getting Serious about Humor: Crafting Humor Datasets with Unfunny Large Language Models [27.936545041302377]
Large language models (LLMs) can generate synthetic data for humor detection via editing texts.
We benchmark LLMs on an existing human dataset and show that current LLMs display an impressive ability to 'unfun' jokes.
We extend our approach to a code-mixed English-Hindi humor dataset, where we find that GPT-4's synthetic data is highly rated by bilingual annotators.
arXiv Detail & Related papers (2024-02-23T02:58:12Z) - Towards Multimodal Prediction of Spontaneous Humour: A Novel Dataset and First Results [84.37263300062597]
Humor is a substantial element of human social behavior, affect, and cognition.
Current methods of humor detection have been exclusively based on staged data, making them inadequate for "real-world" applications.
We contribute to addressing this deficiency by introducing the novel Passau-Spontaneous Football Coach Humor dataset, comprising about 11 hours of recordings.
arXiv Detail & Related papers (2022-09-28T17:36:47Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
We extend the vanilla pretrain-finetune pipeline with extra code-switching restore task to bridge the gap between the pretrain and finetune stages.
Our approach could narrow the cross-lingual sentence representation distance and improve low-frequency word translation with trivial computational cost.
arXiv Detail & Related papers (2022-04-16T16:08:38Z) - "So You Think You're Funny?": Rating the Humour Quotient in Standup
Comedy [24.402762942487367]
We devise a novel scoring mechanism to annotate the training data with a humour quotient score using the audience's laughter.
The normalized duration (laughter duration divided by the clip duration) of laughter in each clip is used to compute this humour score on a five-point scale (0-4)
We use this dataset to train a model that provides a "funniness" score, on a five-point scale, given the audio and its corresponding text.
arXiv Detail & Related papers (2021-10-25T09:46:46Z) - M2H2: A Multimodal Multiparty Hindi Dataset For Humor Recognition in
Conversations [72.81164101048181]
We propose a dataset for Multimodal Multiparty Hindi Humor (M2H2) recognition in conversations containing 6,191 utterances from 13 episodes of a very popular TV series "Shrimaan Shrimati Phir Se"
Each utterance is annotated with humor/non-humor labels and encompasses acoustic, visual, and textual modalities.
The empirical results on M2H2 dataset demonstrate that multimodal information complements unimodal information for humor recognition.
arXiv Detail & Related papers (2021-08-03T02:54:09Z) - Parallel Attention Network with Sequence Matching for Video Grounding [56.649826885121264]
Given a video, video grounding aims to retrieve a temporal moment that semantically corresponds to a language query.
We propose a Parallel Attention Network with Sequence matching (SeqPAN) to address the challenges in this task.
arXiv Detail & Related papers (2021-05-18T12:43:20Z) - Dutch Humor Detection by Generating Negative Examples [5.888646114353371]
Humor detection is usually modeled as a binary classification task, trained to predict if the given text is a joke or another type of text.
We propose using text generation algorithms for imitating the original joke dataset to increase the difficulty for the learning algorithm.
We compare the humor detection capabilities of classic neural network approaches with the state-of-the-art Dutch language model RobBERT.
arXiv Detail & Related papers (2020-10-26T15:15:10Z) - Pre-training via Paraphrasing [96.79972492585112]
We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual paraphrasing objective.
We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization.
For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation.
arXiv Detail & Related papers (2020-06-26T14:43:43Z) - ColBERT: Using BERT Sentence Embedding in Parallel Neural Networks for
Computational Humor [0.0]
We propose a novel approach for detecting and rating humor in short texts based on a popular linguistic theory of humor.
The proposed technical method initiates by separating sentences of the given text and utilizing the BERT model to generate embeddings for each one.
We accompany the paper with a novel dataset for humor detection consisting of 200,000 formal short texts.
The proposed model obtained F1 scores of 0.982 and 0.869 in the humor detection experiments which outperform general and state-of-the-art models.
arXiv Detail & Related papers (2020-04-27T13:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.