Federated Retrieval-Augmented Generation: A Systematic Mapping Study
- URL: http://arxiv.org/abs/2505.18906v1
- Date: Sat, 24 May 2025 23:45:12 GMT
- Title: Federated Retrieval-Augmented Generation: A Systematic Mapping Study
- Authors: Abhijit Chakraborty, Chahana Dahal, Vivek Gupta,
- Abstract summary: Federated Retrieval-Augmented Generation (Federated RAG) combines Federated Learning (FL) with Retrieval-Augmented Generation (RAG)<n>RAG improves the factual accuracy of language models by grounding outputs in external knowledge.<n>This paper presents the first systematic mapping study of Federated RAG, covering literature published between 2020 and 2025.
- Score: 6.108593045873404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Retrieval-Augmented Generation (Federated RAG) combines Federated Learning (FL), which enables distributed model training without exposing raw data, with Retrieval-Augmented Generation (RAG), which improves the factual accuracy of language models by grounding outputs in external knowledge. As large language models are increasingly deployed in privacy-sensitive domains such as healthcare, finance, and personalized assistance, Federated RAG offers a promising framework for secure, knowledge-intensive natural language processing (NLP). To the best of our knowledge, this paper presents the first systematic mapping study of Federated RAG, covering literature published between 2020 and 2025. Following Kitchenham's guidelines for evidence-based software engineering, we develop a structured classification of research focuses, contribution types, and application domains. We analyze architectural patterns, temporal trends, and key challenges, including privacy-preserving retrieval, cross-client heterogeneity, and evaluation limitations. Our findings synthesize a rapidly evolving body of research, identify recurring design patterns, and surface open questions, providing a foundation for future work at the intersection of RAG and federated systems.
Related papers
- A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions [1.4931265249949528]
Retrieval-Augmented Generation (RAG) is a major advancement in natural language processing (NLP)<n>RAG combines large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance.<n>This paper presents a systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations.
arXiv Detail & Related papers (2025-07-25T03:05:46Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers [0.0]
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance large language models.<n>RAG introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs.<n>This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented language modeling systems.
arXiv Detail & Related papers (2025-05-28T22:57:04Z) - Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented generation (RAG) has emerged as a pivotal technique in artificial intelligence (AI)<n>Recent advancements in RAG for embodied AI, with a particular focus on applications in planning, task execution, multimodal perception, interaction, and specialized domains.
arXiv Detail & Related papers (2025-03-23T10:33:28Z) - A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years.<n>RAG combines large-scale retrieval systems with generative models.<n>We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge.
arXiv Detail & Related papers (2025-03-11T01:59:35Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.<n>We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)<n>We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.<n>Recent research has focused on graph foundation models (GFMs)<n>GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs.
Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency.
Future research directions are proposed, focusing on improving the robustness of RAG models.
arXiv Detail & Related papers (2024-10-03T22:29:47Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements.
This paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation.
It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies.
arXiv Detail & Related papers (2024-04-17T01:27:42Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
Large Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination.
Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases.
arXiv Detail & Related papers (2023-12-18T07:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.