STRICT: Stress Test of Rendering Images Containing Text
- URL: http://arxiv.org/abs/2505.18985v1
- Date: Sun, 25 May 2025 05:37:08 GMT
- Title: STRICT: Stress Test of Rendering Images Containing Text
- Authors: Tianyu Zhang, Xinyu Wang, Zhenghan Tai, Lu Li, Jijun Chi, Jingrui Tian, Hailin He, Suyuchen Wang,
- Abstract summary: $textbfSTRICT$ is a benchmark designed to stress-test the ability of diffusion models to render coherent and instruction-aligned text in images.<n>We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities.
- Score: 11.236527918747925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
Related papers
- EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models [31.31018600797305]
We propose a prompt inversion technique called sys for text-to-image diffusion models.<n>Our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability.
arXiv Detail & Related papers (2025-06-03T16:44:15Z) - Beyond Words: Advancing Long-Text Image Generation via Multimodal Autoregressive Models [76.68654868991517]
Long-form text in images, such as paragraphs in slides or documents, remains a major challenge for current generative models.<n>We introduce a novel text-focused, binary tokenizer optimized for capturing detailed scene text features.<n>We develop ModelName, a multimodal autoregressive model that excels in generating high-quality long-text images with unprecedented fidelity.
arXiv Detail & Related papers (2025-03-26T03:44:25Z) - Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
This paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate.
We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references.
Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
arXiv Detail & Related papers (2024-11-22T21:38:51Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
We introduce a novel diffusion-based framework to enhance the alignment of generated images with their corresponding descriptions.
Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image.
We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt.
arXiv Detail & Related papers (2024-06-24T06:12:16Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models and Large Language Models [52.23899502520261]
We introduce a novel framework named, ARTIST, which incorporates a dedicated textual diffusion model to focus on the learning of text structures specifically.<n>We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.<n>This disentangled architecture design and training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - Refining Text-to-Image Generation: Towards Accurate Training-Free Glyph-Enhanced Image Generation [5.55027585813848]
The capability to generate visual text is crucial, offering both academic interest and a wide range of practical applications.
We introduce a benchmark, LenCom-Eval, specifically designed for testing models' capability in generating images with Lengthy and Complex visual text.
We demonstrate notable improvements across a range of evaluation metrics, including CLIPScore, OCR precision, recall, F1 score, accuracy, and edit distance scores.
arXiv Detail & Related papers (2024-03-25T04:54:49Z) - Contextualized Diffusion Models for Text-Guided Image and Video Generation [67.69171154637172]
Conditional diffusion models have exhibited superior performance in high-fidelity text-guided visual generation and editing.
We propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample.
We generalize our model to both DDPMs and DDIMs with theoretical derivations, and demonstrate the effectiveness of our model in evaluations with two challenging tasks: text-to-image generation, and text-to-video editing.
arXiv Detail & Related papers (2024-02-26T15:01:16Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
This paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model.
Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder.
By employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images.
arXiv Detail & Related papers (2023-12-08T07:47:46Z) - Grounded Text-to-Image Synthesis with Attention Refocusing [16.9170825951175]
We reveal the potential causes in the diffusion model's cross-attention and self-attention layers.
We propose two novel losses to refocus attention maps according to a given spatial layout during sampling.
We show that our proposed attention refocusing effectively improves the controllability of existing approaches.
arXiv Detail & Related papers (2023-06-08T17:59:59Z) - SpaText: Spatio-Textual Representation for Controllable Image Generation [61.89548017729586]
SpaText is a new method for text-to-image generation using open-vocabulary scene control.
In addition to a global text prompt that describes the entire scene, the user provides a segmentation map.
We show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-conditional-based.
arXiv Detail & Related papers (2022-11-25T18:59:10Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis.
We train an ensemble of text-to-image diffusion models specialized for different stages synthesis.
Our ensemble of diffusion models, called eDiffi, results in improved text alignment while maintaining the same inference cost.
arXiv Detail & Related papers (2022-11-02T17:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.