Kernel Space Diffusion Model for Efficient Remote Sensing Pansharpening
- URL: http://arxiv.org/abs/2505.18991v1
- Date: Sun, 25 May 2025 06:25:31 GMT
- Title: Kernel Space Diffusion Model for Efficient Remote Sensing Pansharpening
- Authors: Hancong Jin, Zihan Cao, Liangjian Deng,
- Abstract summary: Kernel Space Diffusion Model (KSDiff) is a novel approach that leverages diffusion processes in a latent space to generate convolutional kernels enriched with global contextual information.<n> Experiments on three widely used datasets, including WorldView-3, GaoFen-2, and QuickBird, demonstrate the superior performance of KSDiff both qualitatively and quantitatively.
- Score: 8.756657890124766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pansharpening is a fundamental task in remote sensing that integrates high-resolution panchromatic imagery (PAN) with low-resolution multispectral imagery (LRMS) to produce an enhanced image with both high spatial and spectral resolution. Despite significant progress in deep learning-based approaches, existing methods often fail to capture the global priors inherent in remote sensing data distributions. Diffusion-based models have recently emerged as promising solutions due to their powerful distribution mapping capabilities; however, they suffer from significant inference latency, which limits their practical applicability. In this work, we propose the Kernel Space Diffusion Model (KSDiff), a novel approach that leverages diffusion processes in a latent space to generate convolutional kernels enriched with global contextual information, thereby improving pansharpening quality while enabling faster inference. Specifically, KSDiff constructs these kernels through the integration of a low-rank core tensor generator and a unified factor generator, orchestrated by a structure-aware multi-head attention mechanism. We further introduce a two-stage training strategy tailored for pansharpening, enabling KSDiff to serve as a framework for enhancing existing pansharpening architectures. Experiments on three widely used datasets, including WorldView-3, GaoFen-2, and QuickBird, demonstrate the superior performance of KSDiff both qualitatively and quantitatively. Code will be released upon possible acceptance.
Related papers
- A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution [4.487807378174191]
We propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN)<n>Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information.<n>An Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies.<n>To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear with depthwise separable convolutions.
arXiv Detail & Related papers (2025-05-06T11:15:59Z) - C2D-ISR: Optimizing Attention-based Image Super-resolution from Continuous to Discrete Scales [6.700548615812325]
We propose a novel framework, textbfC2D-ISR, for optimizing attention-based image super-resolution models.<n>Our approach is based on a two-stage training methodology and a hierarchical encoding mechanism.<n>In addition, we generalize the hierarchical encoding mechanism with existing attention-based network structures.
arXiv Detail & Related papers (2025-03-17T21:52:18Z) - High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
Diffusion models have revolutionized text-to-image synthesis by delivering exceptional quality, fine detail resolution, and strong contextual awareness.<n>We propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models.<n>Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process.
arXiv Detail & Related papers (2024-10-14T02:49:23Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - SSDiff: Spatial-spectral Integrated Diffusion Model for Remote Sensing Pansharpening [14.293042131263924]
We introduce a spatial-spectral integrated diffusion model for the remote sensing pansharpening task, called SSDiff.
SSDiff considers the pansharpening process as the fusion process of spatial and spectral components from the perspective of subspace decomposition.
arXiv Detail & Related papers (2024-04-17T16:30:56Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
Two major stumbling blocks hinder the development, including pixel misalignment and inefficient inference.
This study introduces an architecture search-based paradigm incorporating self-alignment and detail repletion modules for robust multi-exposure image fusion.
The proposed method outperforms various competitive schemes, achieving a noteworthy 3.19% improvement in PSNR for general scenarios and an impressive 23.5% enhancement in misaligned scenarios.
arXiv Detail & Related papers (2023-05-20T17:01:52Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm.
The sparsity of point clouds, especially for the points far away, makes it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.
We propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI)
FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on baseline, and outperforms competing two-stage approaches.
arXiv Detail & Related papers (2022-09-22T02:07:25Z) - PC-GANs: Progressive Compensation Generative Adversarial Networks for
Pan-sharpening [50.943080184828524]
We propose a novel two-step model for pan-sharpening that sharpens the MS image through the progressive compensation of the spatial and spectral information.
The whole model is composed of triple GANs, and based on the specific architecture, a joint compensation loss function is designed to enable the triple GANs to be trained simultaneously.
arXiv Detail & Related papers (2022-07-29T03:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.