Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models
- URL: http://arxiv.org/abs/2505.19121v2
- Date: Wed, 02 Jul 2025 06:15:45 GMT
- Title: Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models
- Authors: Seunguk Yu, Juhwan Choi, Youngbin Kim,
- Abstract summary: This paper investigates the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics.<n>We collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages.<n>We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests.
- Score: 7.480124826347168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (MSQAD), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
Related papers
- Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English [66.97110551643722]
We investigate dialectal disparities in Large Language Models (LLMs) reasoning tasks.<n>We find that LLMs produce less accurate responses and simpler reasoning chains and explanations for AAE inputs.<n>These findings highlight systematic differences in how LLMs process and reason about different language varieties.
arXiv Detail & Related papers (2025-03-06T05:15:34Z) - Assessing Large Language Models in Agentic Multilingual National Bias [31.67058518564021]
Cross-language disparities in reasoning-based recommendations remain largely unexplored.<n>This study is the first to address this gap.<n>We investigate multilingual bias in state-of-the-art LLMs by analyzing their responses to decision-making tasks across multiple languages.
arXiv Detail & Related papers (2025-02-25T08:07:42Z) - Can Language Models Learn Typologically Implausible Languages? [62.823015163987996]
Grammatical features across human languages show intriguing correlations often attributed to learning biases in humans.<n>We discuss how language models (LMs) allow us to better determine the role of domain-general learning biases in language universals.<n>We test LMs on an array of highly naturalistic but counterfactual versions of the English (head-initial) and Japanese (head-final) languages.
arXiv Detail & Related papers (2025-02-17T20:40:01Z) - A Novel Interpretability Metric for Explaining Bias in Language Models: Applications on Multilingual Models from Southeast Asia [0.3376269351435396]
We propose a novel metric to measure token-level contributions to biased behavior in pretrained language models (PLMs)
Our results confirm the presence of sexist and homophobic bias in Southeast Asian PLMs.
Interpretability and semantic analyses also reveal that PLM bias is strongly induced by words relating to crime, intimate relationships, and helping.
arXiv Detail & Related papers (2024-10-20T18:31:05Z) - A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
We evaluate the severity of bias toward a view by using a biased model in edge cases of excessive bias scenarios.
Our findings reveal a discrepancy in LLM performance in identifying implicit and explicit opinions, with a general tendency of bias toward explicit opinions of opposing stances.
The direct, incautious responses of the unaligned models suggest a need for further refinement of decisiveness.
arXiv Detail & Related papers (2024-08-15T15:23:00Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Building on the Moral Machine experiment, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP.<n>Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions.<n>We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems.
arXiv Detail & Related papers (2024-07-02T14:02:53Z) - White Men Lead, Black Women Help? Benchmarking and Mitigating Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency in Large Language Model (LLM)-generated content.<n>We introduce the Language Agency Bias Evaluation benchmark, which comprehensively evaluates biases in LLMs.<n>Using LABE, we unveil language agency social biases in 3 recent LLMs: ChatGPT, Llama3, and Mistral.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
We investigate the bias present in monolingual BERT models across a diverse set of languages.
We propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood.
We conclude that current methods of probing for bias are highly language-dependent.
arXiv Detail & Related papers (2022-11-25T23:38:08Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.