FHGS: Feature-Homogenized Gaussian Splatting
- URL: http://arxiv.org/abs/2505.19154v1
- Date: Sun, 25 May 2025 14:08:49 GMT
- Title: FHGS: Feature-Homogenized Gaussian Splatting
- Authors: Q. G. Duan, Benyun Zhao, Mingqiao Han Yijun Huang, Ben M. Chen,
- Abstract summary: $textitFHGS$ is a novel 3D feature fusion framework inspired by physical models.<n>It can achieve high-precision mapping of arbitrary 2D features from pre-trained models to 3D scenes while preserving the real-time rendering efficiency of 3DGS.
- Score: 7.238124816235862
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scene understanding based on 3D Gaussian Splatting (3DGS) has recently achieved notable advances. Although 3DGS related methods have efficient rendering capabilities, they fail to address the inherent contradiction between the anisotropic color representation of gaussian primitives and the isotropic requirements of semantic features, leading to insufficient cross-view feature consistency. To overcome the limitation, we proposes $\textit{FHGS}$ (Feature-Homogenized Gaussian Splatting), a novel 3D feature fusion framework inspired by physical models, which can achieve high-precision mapping of arbitrary 2D features from pre-trained models to 3D scenes while preserving the real-time rendering efficiency of 3DGS. Specifically, our $\textit{FHGS}$ introduces the following innovations: Firstly, a universal feature fusion architecture is proposed, enabling robust embedding of large-scale pre-trained models' semantic features (e.g., SAM, CLIP) into sparse 3D structures. Secondly, a non-differentiable feature fusion mechanism is introduced, which enables semantic features to exhibit viewpoint independent isotropic distributions. This fundamentally balances the anisotropic rendering of gaussian primitives and the isotropic expression of features; Thirdly, a dual-driven optimization strategy inspired by electric potential fields is proposed, which combines external supervision from semantic feature fields with internal primitive clustering guidance. This mechanism enables synergistic optimization of global semantic alignment and local structural consistency. More interactive results can be accessed on: https://fhgs.cuastro.org/.
Related papers
- GraphGSOcc: Semantic-Geometric Graph Transformer with Dynamic-Static Decoupling for 3D Gaussian Splatting-based Occupancy Prediction [2.3239379129613535]
GraphGSOcc is a novel framework that combines semantic and geometric graph Transformer and decouples dynamic-static objects.<n>It achieves state-ofthe-art performance on the SurroundOcc-nuScenes, Occ3D-nuScenes, OpenOcc and KITTI occupancy benchmarks.
arXiv Detail & Related papers (2025-06-13T06:09:57Z) - GSFF-SLAM: 3D Semantic Gaussian Splatting SLAM via Feature Field [17.57215792490409]
GSFF-SLAM is a novel dense semantic SLAM system based on 3D Gaussian Splatting.<n>Our method supports semantic reconstruction using various forms of 2D priors, particularly sparse and noisy signals.<n>When utilizing 2D ground truth priors, GSFF-SLAM achieves state-of-the-art semantic segmentation performance with 95.03% mIoU.
arXiv Detail & Related papers (2025-04-28T01:21:35Z) - econSG: Efficient and Multi-view Consistent Open-Vocabulary 3D Semantic Gaussians [56.85804719947]
We propose econSG for open-vocabulary semantic segmentation with 3DGS.<n>Our econSG shows state-of-the-art performance on four benchmark datasets compared to the existing methods.
arXiv Detail & Related papers (2025-04-08T13:12:31Z) - SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting [116.22623164585114]
SOGS is an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously.<n>We show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
arXiv Detail & Related papers (2025-03-10T15:50:46Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.<n>FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - Geometric Algebra Planes: Convex Implicit Neural Volumes [70.12234371845445]
We show that GA-Planes is equivalent to a sparse low-rank factor plus low-resolution matrix.
We also show that GA-Planes can be adapted for many existing representations.
arXiv Detail & Related papers (2024-11-20T18:21:58Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.<n>It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
We take a global approach to exploit Transformer-temporal information with a concise Graph and Skipped Transformer architecture.
Specifically, in 3D pose stage, coarse-grained body parts are deployed to construct a fully data-driven adaptive model.
Experiments are conducted on Human3.6M, MPI-INF-3DHP and Human-Eva benchmarks.
arXiv Detail & Related papers (2024-07-03T10:42:09Z) - CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding [32.76277160013881]
We present CLIP-GS, which integrates semantics from Contrastive Language-Image Pre-Training (CLIP) into Gaussian Splatting.
SAC exploits the inherent unified semantics within objects to learn compact yet effective semantic representations of 3D Gaussians.
We also introduce a 3D Coherent Self-training (3DCS) strategy, resorting to the multi-view consistency originated from the 3D model.
arXiv Detail & Related papers (2024-04-22T15:01:32Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.