Efficient Policy Optimization in Robust Constrained MDPs with Iteration Complexity Guarantees
- URL: http://arxiv.org/abs/2505.19238v1
- Date: Sun, 25 May 2025 17:27:06 GMT
- Title: Efficient Policy Optimization in Robust Constrained MDPs with Iteration Complexity Guarantees
- Authors: Sourav Ganguly, Arnob Ghosh, Kishan Panaganti, Adam Wierman,
- Abstract summary: Constrained decision-making is essential for designing safe policies in real-world control systems.<n>We propose a novel technique that effectively minimizes the constraint value function--to satisfy the constraints.<n>We prove that such an algorithm finds a policy with at most $epsilon$ sub-optimality and feasible policy after $O(epsilon-2)$.
- Score: 16.01190705000295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constrained decision-making is essential for designing safe policies in real-world control systems, yet simulated environments often fail to capture real-world adversities. We consider the problem of learning a policy that will maximize the cumulative reward while satisfying a constraint, even when there is a mismatch between the real model and an accessible simulator/nominal model. In particular, we consider the robust constrained Markov decision problem (RCMDP) where an agent needs to maximize the reward and satisfy the constraint against the worst possible stochastic model under the uncertainty set centered around an unknown nominal model. Primal-dual methods, effective for standard constrained MDP (CMDP), are not applicable here because of the lack of the strong duality property. Further, one cannot apply the standard robust value-iteration based approach on the composite value function either as the worst case models may be different for the reward value function and the constraint value function. We propose a novel technique that effectively minimizes the constraint value function--to satisfy the constraints; on the other hand, when all the constraints are satisfied, it can simply maximize the robust reward value function. We prove that such an algorithm finds a policy with at most $\epsilon$ sub-optimality and feasible policy after $O(\epsilon^{-2})$ iterations. In contrast to the state-of-the-art method, we do not need to employ a binary search, thus, we reduce the computation time by at least 4x for smaller value of discount factor ($\gamma$) and by at least 6x for larger value of $\gamma$.
Related papers
- A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization [17.25924791071807]
We present a novel type of subgradient algorithm for complex constraints.<n>We show that our method is significantly faster than two-of-the-art algorithms.
arXiv Detail & Related papers (2025-01-31T15:18:52Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Rectified Pessimistic-Optimistic Learning for Stochastic Continuum-armed
Bandit with Constraints [4.879346089164413]
We optimize a black-box reward function $f(x)$ subject to a black-box constraint function $g(x)leq 0$ over a continuous space.
We propose a Rectified Pessimistic-Optimistic Learning framework (RPOL), a penalty-based method incorporating optimistic and pessimistic GP bandit learning for reward and constraint functions.
arXiv Detail & Related papers (2022-11-27T04:28:16Z) - A Unifying Framework for Online Optimization with Long-Term Constraints [62.35194099438855]
We study online learning problems in which a decision maker has to take a sequence of decisions subject to $m$ long-term constraints.
The goal is to maximize their total reward, while at the same time achieving small cumulative violation across the $T$ rounds.
We present the first best-of-both-world type algorithm for this general class problems, with no-regret guarantees both in the case in which rewards and constraints are selected according to an unknown model, and in the case in which they are selected at each round by an adversary.
arXiv Detail & Related papers (2022-09-15T16:59:19Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Achieving Zero Constraint Violation for Constrained Reinforcement
Learning via Primal-Dual Approach [37.80609997145897]
Reinforcement learning is widely used in applications where one needs to perform sequential decisions while interacting with the environment.
The problem becomes more challenging when the decision requirement includes satisfying some safety constraints.
Various algorithms are available to solve CMDP problems in a model-free manner to achieve $epsilon$-optimal cumulative reward with $epsilon$ feasible policies.
An important question here is whether we can achieve $epsilon$-optimal cumulative reward with zero constraint violations or not.
arXiv Detail & Related papers (2021-09-13T21:27:03Z) - Implicitly Regularized RL with Implicit Q-Values [42.87920755961722]
The $Q$-function is a central quantity in many Reinforcement Learning (RL) algorithms for which RL agents behave following a (soft)-greedy policy.
We propose to parametrize the $Q$-function implicitly, as the sum of a log-policy and of a value function.
We derive a practical off-policy deep RL algorithm, suitable for large action spaces, and that enforces the softmax relation between the policy and the $Q$-value.
arXiv Detail & Related papers (2021-08-16T12:20:47Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
The softmax policy gradient (PG) method is arguably one of the de facto implementations of policy optimization in modern reinforcement learning.
We demonstrate that softmax PG methods can take exponential time -- in terms of $mathcalS|$ and $frac11-gamma$ -- to converge.
arXiv Detail & Related papers (2021-02-22T18:56:26Z) - Model-Free Algorithm and Regret Analysis for MDPs with Long-Term
Constraints [38.2783003051101]
This paper uses concepts from constrained optimization and Q-learning to propose an algorithm for CMDP with long-term constraints.
We note that these are the first results on regret analysis for MDP with long-term constraints, where the transition probabilities are not known apriori.
arXiv Detail & Related papers (2020-06-10T17:19:29Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.