CaseEdit: Enhancing Localized Commonsense Reasoning via Null-Space Constrained Knowledge Editing in Small Parameter Language Models
- URL: http://arxiv.org/abs/2505.19383v1
- Date: Mon, 26 May 2025 00:54:04 GMT
- Title: CaseEdit: Enhancing Localized Commonsense Reasoning via Null-Space Constrained Knowledge Editing in Small Parameter Language Models
- Authors: Varun Reddy, Yen-Ling Kuo,
- Abstract summary: Large language models (LLMs) exhibit strong performance on factual recall and general reasoning but struggle to adapt to user-specific, commonsense knowledge.<n>We introduce CaseEdit, a new dataset and generation pipeline for evaluating localized, personalized commonsense knowledge editing.<n>Our results indicate that using CaseEdit with effective editing techniques like AlphaEdit allows small models to internalize high-quality, context-sensitive common-sense knowledge.
- Score: 4.190739522901791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit strong performance on factual recall and general reasoning but struggle to adapt to user-specific, commonsense knowledge, a challenge particularly acute in small-parameter settings where computational efficiency is prioritized. We introduce CaseEdit, a new dataset and generation pipeline for evaluating localized, personalized commonsense knowledge editing in small LLMs to address this. Built upon the ATOMIC20/20 commonsense graph, CaseEdit uses a multi-stage inference process to generate both typical and atypical contextual edits for household objects, paired with targeted evaluation questions across four axes: reliability, generalization, locality, and portability. We evaluate established knowledge editing methods using CaseEdit and demonstrate that AlphaEdit, a technique employing null-space projection to minimize interference with unrelated knowledge, consistently outperforms other methods when applied to an LLaMA 3.2 3B model, even in scalability tests, showing minimal ripple effects. Our results indicate that using CaseEdit with effective editing techniques like AlphaEdit allows small models to internalize high-quality, context-sensitive common-sense knowledge, paving the way for lightweight, personalized assistants.
Related papers
- Latent Knowledge Scalpel: Precise and Massive Knowledge Editing for Large Language Models [3.834827405473377]
Large Language Models (LLMs) often retain inaccurate or outdated information from pre-training, leading to incorrect predictions or biased outputs during inference.<n>We introduce the Latent Knowledge Scalpel (LKS), an LLM editor that manipulates the latent knowledge of specific entities via a lightweight hypernetwork to enable precise and large-scale editing.<n> Experiments conducted on Llama-2 and Mistral show even with the number of simultaneous edits reaching 10,000, LKS effectively performs knowledge editing while preserving the general abilities of the edited LLMs.
arXiv Detail & Related papers (2025-08-01T03:51:43Z) - Retention analysis of edited knowledge after fine-tuning [5.440397659472036]
Large language models (LLMs) store vast amounts of knowledge, which often requires updates to correct factual errors, incorporate newly acquired information, or adapt model behavior.<n>Model editing methods have emerged as efficient solutions for such updates, offering localized and precise knowledge modification at significantly lower computational cost than continual training.<n>However, the effect of fine-tuning on previously edited knowledge remains poorly understood.
arXiv Detail & Related papers (2025-07-14T15:51:19Z) - MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs [82.34547399693966]
Existing methods for lifelong model editing compromise generalization, interfere with past edits, or fail to scale to long editing sequences.<n>We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory.<n>MeMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits.
arXiv Detail & Related papers (2025-06-09T16:16:42Z) - UniEdit: A Unified Knowledge Editing Benchmark for Large Language Models [16.546605509744015]
We introduce UniEdit, a unified benchmark for large language models (LLMs) editing grounded in open-domain knowledge.<n>First, we construct editing samples by selecting entities from 25 common domains across five major categories.<n>To address the issues of generality and locality in editing, we design an Neighborhood Multi-hop Chain Sampling (NMCS) algorithm.
arXiv Detail & Related papers (2025-05-18T10:19:01Z) - The Mirage of Model Editing: Revisiting Evaluation in the Wild [70.17413507444704]
We introduce QAEdit, a new benchmark aligned with widely used question answering (QA) datasets, and WILD, a task-agnostic evaluation framework.<n>Our single editing experiments show that current editing methods perform substantially worse than previously reported.
arXiv Detail & Related papers (2025-02-16T15:57:55Z) - ComprehendEdit: A Comprehensive Dataset and Evaluation Framework for Multimodal Knowledge Editing [27.034072044001736]
Large multimodal language models (MLLMs) have revolutionized natural language processing and visual understanding.<n>Current knowledge editing evaluations are limited in scope and potentially biased.<n>We introduce ComprehendEdit, a comprehensive benchmark comprising eight diverse tasks from multiple datasets.
arXiv Detail & Related papers (2024-12-17T11:41:49Z) - Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
We identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target.
We propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge.
arXiv Detail & Related papers (2024-10-10T11:09:00Z) - AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models [63.209935157623946]
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge.<n>We introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters.<n>We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge.
arXiv Detail & Related papers (2024-10-03T10:06:27Z) - Has this Fact been Edited? Detecting Knowledge Edits in Language Models [5.260519479124422]
Knowledge editing methods (KEs) can update language models' obsolete or inaccurate knowledge learned from pre-training.<n>Knowing whether a generated output is based on edited knowledge or first-hand knowledge from pre-training can increase users' trust in generative models.<n>We propose a novel task: detecting edited knowledge in language models.
arXiv Detail & Related papers (2024-05-04T22:02:24Z) - EVEDIT: Event-based Knowledge Editing with Deductive Editing Boundaries [69.72012539060731]
We introduce a theoretical framework for efficient knowledge editing (KE) in large language models (LLMs)
We propose a novel task of event-based knowledge editing that pairs facts with event descriptions.
We empirically demonstrate the superiority of event-based editing over the existing setting on resolving uncertainty in edited models.
arXiv Detail & Related papers (2024-02-17T16:34:50Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
Large language models (LLMs) have played a pivotal role in building communicative AI, yet they encounter the challenge of efficient updates.
This work seeks to understand the strengths and limitations of editing methods, facilitating practical applications of communicative AI.
arXiv Detail & Related papers (2024-02-08T17:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.