Uniform convergence of the smooth calibration error and its relationship with functional gradient
- URL: http://arxiv.org/abs/2505.19396v3
- Date: Sat, 14 Jun 2025 09:11:32 GMT
- Title: Uniform convergence of the smooth calibration error and its relationship with functional gradient
- Authors: Futoshi Futami, Atsushi Nitanda,
- Abstract summary: This work focuses on the smooth calibration error (CE) and provides a uniform convergence bound.<n>We analyze three representative algorithms: gradient boosting trees, kernel boosting, and two-layer neural networks.<n>Our results offer new theoretical insights and practical guidance for designing reliable probabilistic models.
- Score: 10.906645958268939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Calibration is a critical requirement for reliable probabilistic prediction, especially in high-risk applications. However, the theoretical understanding of which learning algorithms can simultaneously achieve high accuracy and good calibration remains limited, and many existing studies provide empirical validation or a theoretical guarantee in restrictive settings. To address this issue, in this work, we focus on the smooth calibration error (CE) and provide a uniform convergence bound, showing that the smooth CE is bounded by the sum of the smooth CE over the training dataset and a generalization gap. We further prove that the functional gradient of the loss function can effectively control the training smooth CE. Based on this framework, we analyze three representative algorithms: gradient boosting trees, kernel boosting, and two-layer neural networks. For each, we derive conditions under which both classification and calibration performances are simultaneously guaranteed. Our results offer new theoretical insights and practical guidance for designing reliable probabilistic models with provable calibration guarantees.
Related papers
- h-calibration: Rethinking Classifier Recalibration with Probabilistic Error-Bounded Objective [12.903217487071172]
Deep neural networks have demonstrated remarkable performance across numerous learning tasks but often suffer from miscalibration.<n>This has inspired many recent works on mitigating miscalibration, particularly through post-hoc recalibration methods.<n>We propose a probabilistic learning framework for calibration called h-calibration, which theoretically constructs an equivalent learning formulation for canonical calibration with boundedness.<n>Our method not only overcomes the ten identified limitations but also achieves markedly better performance than traditional methods.
arXiv Detail & Related papers (2025-06-22T09:56:44Z) - CLUE: Neural Networks Calibration via Learning Uncertainty-Error alignment [7.702016079410588]
We introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that aligns predicted uncertainty with observed error during training.<n>We show that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-28T19:23:47Z) - The Final Layer Holds the Key: A Unified and Efficient GNN Calibration Framework [28.079132719743697]
Graph Neural Networks (GNNs) have demonstrated remarkable effectiveness on graph-based tasks.<n>However, their predictive confidence is often miscalibrated, typically exhibiting under-confidence.<n>We propose a simple yet efficient graph calibration method to address this issue.
arXiv Detail & Related papers (2025-05-16T15:02:17Z) - Rethinking Early Stopping: Refine, Then Calibrate [49.966899634962374]
We present a novel variational formulation of the calibration-refinement decomposition.<n>We provide theoretical and empirical evidence that calibration and refinement errors are not minimized simultaneously during training.
arXiv Detail & Related papers (2025-01-31T15:03:54Z) - Calibrating Deep Neural Network using Euclidean Distance [5.675312975435121]
In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples.
High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability.
This research introduces a novel loss function called Focal Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples.
arXiv Detail & Related papers (2024-10-23T23:06:50Z) - Orthogonal Causal Calibration [55.28164682911196]
We develop general algorithms for reducing the task of causal calibration to that of calibrating a standard (non-causal) predictive model.<n>Our results are exceedingly general, showing that essentially any existing calibration algorithm can be used in causal settings.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
Deep networks often suffer from overconfidence and misaligned predictive distributions.
We introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance between the learned predictive distribution and the empirical, conditional distribution in a dataset.
We show that using to measure congruence 1) accurately quantifies misalignment between distributions when the data generating process is known, 2) effectively scales to real-world, high dimensional image regression tasks, and 3) can be used to gauge model reliability on unseen instances.
arXiv Detail & Related papers (2024-05-20T23:30:07Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
We propose a risk-controlling quantile neural operator, a distribution-free, finite-sample functional calibration conformal prediction method.
We provide a theoretical calibration guarantee on the coverage rate, defined as the expected percentage of points on the function domain.
Empirical results on a 2D Darcy flow and a 3D car surface pressure prediction task validate our theoretical results.
arXiv Detail & Related papers (2024-02-02T23:43:28Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
We study the generation of prediction intervals in regression for uncertainty quantification.
We use a general learning theory to characterize the optimality-feasibility tradeoff that encompasses Lipschitz continuity and VC-subgraph classes.
We empirically demonstrate the strengths of our interval generation and calibration algorithms in terms of testing performances compared to existing benchmarks.
arXiv Detail & Related papers (2021-02-26T17:55:30Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.