Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
- URL: http://arxiv.org/abs/2505.19431v1
- Date: Mon, 26 May 2025 02:48:26 GMT
- Title: Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage
- Authors: Chenguang Wang, Xiaoyu Zhang, Kaiyuan Cui, Weichen Zhao, Yongtao Guan, Tianshu Yu,
- Abstract summary: prevailing methods often circumvent the lack of target data by optimizing reverse KL-based objectives.<n>We propose a principled approach for training diffusion-based samplers by directly targeting an objective analogous to the forward KL divergence.<n>Our approach consistently outperforms existing neural samplers across all distributional distance metrics.
- Score: 16.94974733994214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training neural samplers directly from unnormalized densities without access to target distribution samples presents a significant challenge. A critical desideratum in these settings is achieving comprehensive mode coverage, ensuring the sampler captures the full diversity of the target distribution. However, prevailing methods often circumvent the lack of target data by optimizing reverse KL-based objectives. Such objectives inherently exhibit mode-seeking behavior, potentially leading to incomplete representation of the underlying distribution. While alternative approaches strive for better mode coverage, they typically rely on implicit mechanisms like heuristics or iterative refinement. In this work, we propose a principled approach for training diffusion-based samplers by directly targeting an objective analogous to the forward KL divergence, which is conceptually known to encourage mode coverage. We introduce \textit{Importance Weighted Score Matching}, a method that optimizes this desired mode-covering objective by re-weighting the score matching loss using tractable importance sampling estimates, thereby overcoming the absence of target distribution data. We also provide theoretical analysis of the bias and variance for our proposed Monte Carlo estimator and the practical loss function used in our method. Experiments on increasingly complex multi-modal distributions, including 2D Gaussian Mixture Models with up to 120 modes and challenging particle systems with inherent symmetries -- demonstrate that our approach consistently outperforms existing neural samplers across all distributional distance metrics, achieving state-of-the-art results on all benchmarks.
Related papers
- Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Minimax Optimality of the Probability Flow ODE for Diffusion Models [8.15094483029656]
This work develops the first end-to-end theoretical framework for deterministic ODE-based samplers.<n>We propose a smooth regularized score estimator that simultaneously controls both the $L2$ score error and the associated mean Jacobian error.<n>We demonstrate that the resulting sampler achieves the minimax rate in total variation distance, modulo logarithmic factors.
arXiv Detail & Related papers (2025-03-12T17:51:29Z) - End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler [15.372235873766812]
Learnable mixture priors offer improved control over exploration, adaptability to target support, and increased to counteract mode collapse.<n>Our experimental results demonstrate significant performance improvements across a diverse range of real-world and synthetic benchmark problems.
arXiv Detail & Related papers (2025-03-01T14:58:14Z) - Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.<n>LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.<n>We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.<n>We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.<n>Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
The paper presents a novel Importance Sampling (IS) scheme for estimating distribution of performance measures modeled with a rich set of tools such as linear programs, integer linear programs, piecewise linear/quadratic objectives, feature maps specified with deep neural networks, etc.
arXiv Detail & Related papers (2021-02-14T03:37:22Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.