Route to Reason: Adaptive Routing for LLM and Reasoning Strategy Selection
- URL: http://arxiv.org/abs/2505.19435v1
- Date: Mon, 26 May 2025 02:53:17 GMT
- Title: Route to Reason: Adaptive Routing for LLM and Reasoning Strategy Selection
- Authors: Zhihong Pan, Kai Zhang, Yuze Zhao, Yupeng Han,
- Abstract summary: Route-To-Reason (RTR) is a novel unified routing framework that dynamically allocates both LMs and reasoning strategies according to task difficulty under budget constraints.<n>RTR learns compressed representations of both expert models and reasoning strategies, enabling their joint and adaptive selection at inference time.
- Score: 7.045509749924679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The inherent capabilities of a language model (LM) and the reasoning strategies it employs jointly determine its performance in reasoning tasks. While test-time scaling is regarded as an effective approach to tackling complex reasoning tasks, it incurs substantial computational costs and often leads to "overthinking", where models become trapped in "thought pitfalls". To address this challenge, we propose Route-To-Reason (RTR), a novel unified routing framework that dynamically allocates both LMs and reasoning strategies according to task difficulty under budget constraints. RTR learns compressed representations of both expert models and reasoning strategies, enabling their joint and adaptive selection at inference time. This method is low-cost, highly flexible, and can be seamlessly extended to arbitrary black-box or white-box models and strategies, achieving true plug-and-play functionality. Extensive experiments across seven open source models and four reasoning strategies demonstrate that RTR achieves an optimal trade-off between accuracy and computational efficiency among all baselines, achieving higher accuracy than the best single model while reducing token usage by over 60%.
Related papers
- Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Route is a dynamic reasoning framework that automatically selects between general and reasoning modes.<n>We show that Self-Route achieves comparable accuracy to reasoning models while reducing token consumption by 30-55%.
arXiv Detail & Related papers (2025-05-27T03:18:31Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
Current large-language models (LLMs) typically adopt a fixed reasoning strategy, either simple or complex, for all questions, regardless of their difficulty.<n>This neglect of variation in task and reasoning process complexity leads to an imbalance between performance and efficiency.<n>Existing methods attempt to implement training-free fast-slow thinking system switching to handle problems of varying difficulty, but are limited by coarse-grained solution-level strategy adjustments.<n>We propose a novel reasoning paradigm: Process-Level Adaptive Thinking Mode Switching (PATS), which enables LLMs to dynamically adjust their reasoning strategy based on the difficulty of each step, optimizing the balance between
arXiv Detail & Related papers (2025-05-25T17:58:50Z) - AdaReasoner: Adaptive Reasoning Enables More Flexible Thinking in Large Language Models [32.51746551988431]
AdaReasoner is an LLM-agnostic plugin designed for any LLM to automate adaptive reasoning configurations.<n>AdaReasoner is trained using a reinforcement learning (RL) framework, combining a factorized action space with a targeted exploration strategy.<n>It consistently outperforms standard baselines, preserves out-of-distribution robustness, and yield gains on knowledge-intensive tasks through tailored prompts.
arXiv Detail & Related papers (2025-05-22T22:06:11Z) - Learning When to Think: Shaping Adaptive Reasoning in R1-Style Models via Multi-Stage RL [19.731871225975926]
Large reasoning models (LRMs) are proficient at generating explicit, step-by-step reasoning sequences before producing final answers.<n>To address this over-thinking problem, we explore how to equip LRMs with adaptive thinking capabilities.<n>We propose AutoThink, a multi-stage reinforcement learning framework that progressively optimize reasoning policies.
arXiv Detail & Related papers (2025-05-16T04:01:57Z) - Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
We propose a novel two-stage framework for adaptive and efficient reasoning.<n>First, we construct a hybrid reasoning model by merging long and short CoT models.<n>Second, we apply bi-level preference training to guide the model to select suitable reasoning styles.
arXiv Detail & Related papers (2025-04-30T14:01:45Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.<n>We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)<n>RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.<n>RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)<n>FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.<n>FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - SMART: Self-learning Meta-strategy Agent for Reasoning Tasks [44.45037694899524]
We introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to learn and select the most effective strategies for various reasoning tasks.
We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement.
Our experiments demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance.
arXiv Detail & Related papers (2024-10-21T15:55:04Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
We motivate an end-to-end decision-making model based on multimodality-augmented LLM.
We propose a reasoning-decision alignment constraint between the paired CoTs and planning results.
We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver.
arXiv Detail & Related papers (2024-08-25T16:43:47Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
Decision centers on whether to use a large LLM with better performance or a smaller one with reduced costs.
We propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion.
Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
arXiv Detail & Related papers (2024-05-03T14:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.