Languages in Multilingual Speech Foundation Models Align Both Phonetically and Semantically
- URL: http://arxiv.org/abs/2505.19606v1
- Date: Mon, 26 May 2025 07:21:20 GMT
- Title: Languages in Multilingual Speech Foundation Models Align Both Phonetically and Semantically
- Authors: Ryan Soh-Eun Shim, Domenico De Cristofaro, Chengzhi Martin Hu, Alessandro Vietti, Barbara Plank,
- Abstract summary: Cross-lingual alignment in pretrained language models (LMs) has enabled efficient transfer in text-based LMs.<n>It remains an open question whether findings and methods from text-based cross-lingual alignment apply to speech.
- Score: 58.019484208091534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-lingual alignment in pretrained language models (LMs) has enabled efficient transfer in text-based LMs. Such an alignment has also been observed in speech foundation models. However, it remains an open question whether findings and methods from text-based cross-lingual alignment apply to speech. Building on prior work on spoken translation retrieval, we perform pronunciation-controlled experiments to observe if cross-lingual alignment can indeed occur in such models on a semantic basis, instead of relying on phonetic similarities. Our findings indicate that even in the absence of phonetic cues, spoken translation retrieval accuracy remains relatively stable. We follow up with a controlled experiment on a word-level dataset of cross-lingual synonyms and near-homophones, confirming the existence of both phonetic and semantic knowledge in the encoder. Finally, we qualitatively examine the transcriptions produced by early exiting the encoder, where we observe that speech translation produces semantic errors that are characterized by phonetic similarities to corresponding words in the source language. We apply this insight from early exiting to speech recognition in seven low-resource languages unsupported by the Whisper model, and achieve improved accuracy in all languages examined, particularly for languages with transparent orthographies.
Related papers
- Cross-Lingual Transfer Learning for Speech Translation [7.802021866251242]
This paper examines how to expand the speech translation capability of speech foundation models with restricted data.<n>Whisper, a speech foundation model with strong performance on speech recognition and English translation, is used as the example model.<n>Using speech-to-speech retrieval to analyse the audio representations generated by the encoder, we show that utterances from different languages are mapped to a shared semantic space.
arXiv Detail & Related papers (2024-07-01T09:51:48Z) - Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities
on Multilingual Speech Recognition [31.575930914290762]
A novel data-driven approach is proposed to investigate the cross-lingual acoustic-phonetic similarities.
Deep neural networks are trained as mapping networks to transform the distributions from different acoustic models into a directly comparable form.
A relative improvement of 8% over monolingual counterpart is achieved.
arXiv Detail & Related papers (2022-07-07T15:55:41Z) - Cross-lingual Low Resource Speaker Adaptation Using Phonological
Features [2.8080708404213373]
We train a language-agnostic multispeaker model conditioned on a set of phonologically derived features common across different languages.
With as few as 32 and 8 utterances of target speaker data, we obtain high speaker similarity scores and naturalness comparable to the corresponding literature.
arXiv Detail & Related papers (2021-11-17T12:33:42Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus.
We propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences.
arXiv Detail & Related papers (2021-11-14T17:28:09Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
In cross-lingual language models, representations for many different languages live in the same space.
We compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance.
We examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics.
arXiv Detail & Related papers (2021-09-13T21:05:37Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - Detect Language of Transliterated Texts [0.0]
Informal transliteration from other languages to English is prevalent in social media threads, instant messaging, and discussion forums.
We propose a Language Identification (LID) system, with an approach for feature extraction.
We tokenize the words into phonetic syllables and use a simple Long Short-term Memory (LSTM) network architecture to detect the language of transliterated texts.
arXiv Detail & Related papers (2020-04-26T10:28:02Z) - Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation [28.838960956506018]
This paper investigates how the choice of translation language affects the posterior documentation work.
We create 56 bilingual pairs that we apply to the task of low-resource unsupervised word segmentation and alignment.
Our results suggest that incorporating clues into the neural models' input representation increases their translation and alignment quality.
arXiv Detail & Related papers (2020-03-30T10:30:34Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
Cross-lingual models that fit into the word order of the source language might fail to handle target languages.
We investigate whether making models insensitive to the word order of the source language can improve the adaptation performance in target languages.
arXiv Detail & Related papers (2020-01-30T03:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.