Rotation-Equivariant Self-Supervised Method in Image Denoising
- URL: http://arxiv.org/abs/2505.19618v1
- Date: Mon, 26 May 2025 07:32:52 GMT
- Title: Rotation-Equivariant Self-Supervised Method in Image Denoising
- Authors: Hanze Liu, Jiahong Fu, Qi Xie, Deyu Meng,
- Abstract summary: This paper introduces high-accuracy rotation equivariant convolution to self-supervised image denoising.<n>To the best of our knowledge, this is the first time that rotation equivariant image prior is introduced to self-supervised image denoising.<n>To further improve the performance, we design a new mask mechanism to fusion the output of rotation equivariant network and vanilla CNN-based network.
- Score: 46.44312175792672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised image denoising methods have garnered significant research attention in recent years, for this kind of method reduces the requirement of large training datasets. Compared to supervised methods, self-supervised methods rely more on the prior embedded in deep networks themselves. As a result, most of the self-supervised methods are designed with Convolution Neural Networks (CNNs) architectures, which well capture one of the most important image prior, translation equivariant prior. Inspired by the great success achieved by the introduction of translational equivariance, in this paper, we explore the way to further incorporate another important image prior. Specifically, we first apply high-accuracy rotation equivariant convolution to self-supervised image denoising. Through rigorous theoretical analysis, we have proved that simply replacing all the convolution layers with rotation equivariant convolution layers would modify the network into its rotation equivariant version. To the best of our knowledge, this is the first time that rotation equivariant image prior is introduced to self-supervised image denoising at the network architecture level with a comprehensive theoretical analysis of equivariance errors, which offers a new perspective to the field of self-supervised image denoising. Moreover, to further improve the performance, we design a new mask mechanism to fusion the output of rotation equivariant network and vanilla CNN-based network, and construct an adaptive rotation equivariant framework. Through extensive experiments on three typical methods, we have demonstrated the effectiveness of the proposed method.
Related papers
- Rotation Equivariant Arbitrary-scale Image Super-Resolution [62.41329042683779]
The arbitrary-scale image super-resolution (ASISR) aims to achieve arbitrary-scale high-resolution recoveries from a low-resolution input image.<n>We make efforts to construct a rotation equivariant ASISR method in this study.
arXiv Detail & Related papers (2025-08-07T08:51:03Z) - Equivariant Denoisers for Image Restoration [8.865896660863681]
We propose a unified framework named Equivariant Regularization by Denoising (ERED) based on equivariant denoisers and optimization.<n>We analyze the convergence of this algorithm and discuss its practical benefit.
arXiv Detail & Related papers (2024-12-06T10:22:00Z) - Equivariant plug-and-play image reconstruction [10.781078029828473]
Plug-and-play algorithms can leverage powerful pre-trained denoisers to solve inverse imaging problems.
We show that enforcing equivariance to certain groups of transformations on the denoiser improves the stability of the algorithm as well as its reconstruction quality.
Experiments on multiple imaging modalities and denoising networks show that the equivariant plug-and-play algorithm improves both the reconstruction performance and the stability compared to their non-equivariant counterparts.
arXiv Detail & Related papers (2023-12-04T12:07:39Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Imaging with Equivariant Deep Learning [9.333799633608345]
We review the emerging field of equivariant imaging and show how it can provide improved generalization and new imaging opportunities.
We show the interplay between the acquisition physics and group actions and links to iterative reconstruction, blind compressed sensing and self-supervised learning.
arXiv Detail & Related papers (2022-09-05T02:13:57Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Supervised Learning of Sparsity-Promoting Regularizers for Denoising [13.203765985718205]
We present a method for supervised learning of sparsity-promoting regularizers for image denoising.
Our experiments show that the proposed method can learn an operator that outperforms well-known regularizers.
arXiv Detail & Related papers (2020-06-09T21:38:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.