Calibrating Pre-trained Language Classifiers on LLM-generated Noisy Labels via Iterative Refinement
- URL: http://arxiv.org/abs/2505.19675v1
- Date: Mon, 26 May 2025 08:31:55 GMT
- Title: Calibrating Pre-trained Language Classifiers on LLM-generated Noisy Labels via Iterative Refinement
- Authors: Liqin Ye, Agam Shah, Chao Zhang, Sudheer Chava,
- Abstract summary: We propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction.<n>Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively.
- Score: 8.804897656598051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
Related papers
- Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
We introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning.
We show that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
arXiv Detail & Related papers (2024-05-26T07:58:07Z) - Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning [8.387189407144403]
Partial label learning (PLL) is a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label)
NPLL relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem.
We present a minimalistic framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
arXiv Detail & Related papers (2024-02-07T13:32:47Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise
Learning [113.8799653759137]
We introduce a novel label noise type called BadLabel, which can significantly degrade the performance of existing LNL algorithms by a large margin.
BadLabel is crafted based on the label-flipping attack against standard classification.
We propose a robust LNL method that perturbs the labels in an adversarial manner at each epoch to make the loss values of clean and noisy labels again distinguishable.
arXiv Detail & Related papers (2023-05-28T06:26:23Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
Label noise will degenerate the performance of deep learning algorithms.
By leveraging a structural causal model, we propose a novel generative approach for instance-dependent label-noise learning.
arXiv Detail & Related papers (2021-09-07T10:42:54Z) - A Realistic Simulation Framework for Learning with Label Noise [17.14439597393087]
We show that this framework generates synthetic noisy labels that exhibit important characteristics of the label noise.
We also benchmark several existing algorithms for learning with noisy labels.
We propose a new technique, Label Quality Model (LQM), that leverages annotator features to predict and correct against noisy labels.
arXiv Detail & Related papers (2021-07-23T18:53:53Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels [86.5943044285146]
The label noise transition matrix $T$ reflects the probabilities that true labels flip into noisy ones.
In this paper, we focus on learning under the mixed closed-set and open-set label noise.
Our method can better model the mixed label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.
arXiv Detail & Related papers (2020-12-02T02:42:45Z) - Label Noise Types and Their Effects on Deep Learning [0.0]
In this work, we provide a detailed analysis of the effects of different kinds of label noise on learning.
We propose a generic framework to generate feature-dependent label noise, which we show to be the most challenging case for learning.
For the ease of other researchers to test their algorithms with noisy labels, we share corrupted labels for the most commonly used benchmark datasets.
arXiv Detail & Related papers (2020-03-23T18:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.