DiEmo-TTS: Disentangled Emotion Representations via Self-Supervised Distillation for Cross-Speaker Emotion Transfer in Text-to-Speech
- URL: http://arxiv.org/abs/2505.19687v1
- Date: Mon, 26 May 2025 08:47:39 GMT
- Title: DiEmo-TTS: Disentangled Emotion Representations via Self-Supervised Distillation for Cross-Speaker Emotion Transfer in Text-to-Speech
- Authors: Deok-Hyeon Cho, Hyung-Seok Oh, Seung-Bin Kim, Seong-Whan Lee,
- Abstract summary: Cross-speaker emotion transfer in speech synthesis relies on extracting speaker-independent emotion embeddings for accurate emotion modeling.<n>We propose DiEmo-TTS, a self-supervised distillation method to minimize emotional information loss and preserve speaker identity.
- Score: 26.656512860918262
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cross-speaker emotion transfer in speech synthesis relies on extracting speaker-independent emotion embeddings for accurate emotion modeling without retaining speaker traits. However, existing timbre compression methods fail to fully separate speaker and emotion characteristics, causing speaker leakage and degraded synthesis quality. To address this, we propose DiEmo-TTS, a self-supervised distillation method to minimize emotional information loss and preserve speaker identity. We introduce cluster-driven sampling and information perturbation to preserve emotion while removing irrelevant factors. To facilitate this process, we propose an emotion clustering and matching approach using emotional attribute prediction and speaker embeddings, enabling generalization to unlabeled data. Additionally, we designed a dual conditioning transformer to integrate style features better. Experimental results confirm the effectiveness of our method in learning speaker-irrelevant emotion embeddings.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Improving speaker verification robustness with synthetic emotional utterances [14.63248006004598]
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker.<n>Previous models exhibit high error rates when dealing with emotional utterances compared to neutral ones.<n>This issue primarily stems from the limited availability of labeled emotional speech data.<n>We propose a novel approach employing the CycleGAN framework to serve as a data augmentation method.
arXiv Detail & Related papers (2024-11-30T02:18:26Z) - Revealing Emotional Clusters in Speaker Embeddings: A Contrastive
Learning Strategy for Speech Emotion Recognition [27.098672790099304]
It has been assumed that emotion information is indirectly embedded within speaker embeddings, leading to their under-utilization.
Our study reveals a direct and useful link between emotion and state-of-the-art speaker embeddings in the form of intra-speaker clusters.
We introduce a novel contrastive pretraining approach applied to emotion-unlabeled data for speech emotion recognition.
arXiv Detail & Related papers (2024-01-19T20:31:53Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components.
We propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion.
arXiv Detail & Related papers (2023-12-29T08:06:45Z) - Learning Emotional Representations from Imbalanced Speech Data for
Speech Emotion Recognition and Emotional Text-to-Speech [1.4986031916712106]
Speech emotional representations play a key role in Speech Emotion Recognition (SER) and Emotional Text-To-Speech (TTS) tasks.
Models might overfit to the majority Neutral class and fail to produce robust and effective emotional representations.
We use augmentation approaches to train the model and enable it to extract effective and generalizable emotional representations from imbalanced datasets.
arXiv Detail & Related papers (2023-06-09T07:04:56Z) - In-the-wild Speech Emotion Conversion Using Disentangled Self-Supervised
Representations and Neural Vocoder-based Resynthesis [15.16865739526702]
We introduce a methodology that uses self-supervised networks to disentangle the lexical, speaker, and emotional content of the utterance.
We then use a HiFiGAN vocoder to resynthesise the disentangled representations to a speech signal of the targeted emotion.
Results reveal that the proposed approach is aptly conditioned on the emotional content of input speech and is capable of synthesising natural-sounding speech for a target emotion.
arXiv Detail & Related papers (2023-06-02T21:02:51Z) - ZET-Speech: Zero-shot adaptive Emotion-controllable Text-to-Speech
Synthesis with Diffusion and Style-based Models [83.07390037152963]
ZET-Speech is a zero-shot adaptive emotion-controllable TTS model.
It allows users to synthesize any speaker's emotional speech using only a short, neutral speech segment and the target emotion label.
Experimental results demonstrate that ZET-Speech successfully synthesizes natural and emotional speech with the desired emotion for both seen and unseen speakers.
arXiv Detail & Related papers (2023-05-23T08:52:00Z) - Cross-speaker Emotion Transfer by Manipulating Speech Style Latents [7.384726530165295]
We propose a novel method for cross-speaker emotion transfer and manipulation using vector arithmetic in latent style space.
By leveraging only a few labeled samples, we generate emotional speech from reading-style speech without losing the speaker identity.
arXiv Detail & Related papers (2023-03-15T02:34:03Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
Emotional voice conversion (EVC) seeks to convert the emotional state of an utterance while preserving the linguistic content and speaker identity.
In this paper, we aim to explicitly characterize and control the intensity of emotion.
We propose to disentangle the speaker style from linguistic content and encode the speaker style into a style embedding in a continuous space that forms the prototype of emotion embedding.
arXiv Detail & Related papers (2022-01-10T02:11:25Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
We decompose speech into discrete and disentangled learned representations, consisting of content units, F0, speaker, and emotion.
First, we modify the speech content by translating the content units to a target emotion, and then predict the prosodic features based on these units.
Finally, the speech waveform is generated by feeding the predicted representations into a neural vocoder.
arXiv Detail & Related papers (2021-11-14T18:16:42Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
We introduce and publicly release a Mandarin emotion speech dataset including 9,724 samples with audio files and its emotion human-labeled annotation.
Unlike those models which need additional reference audio as input, our model could predict emotion labels just from the input text and generate more expressive speech conditioned on the emotion embedding.
In the experiment phase, we first validate the effectiveness of our dataset by an emotion classification task. Then we train our model on the proposed dataset and conduct a series of subjective evaluations.
arXiv Detail & Related papers (2021-06-17T08:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.