Density Ratio-Free Doubly Robust Proxy Causal Learning
- URL: http://arxiv.org/abs/2505.19807v1
- Date: Mon, 26 May 2025 10:44:26 GMT
- Title: Density Ratio-Free Doubly Robust Proxy Causal Learning
- Authors: Bariscan Bozkurt, Houssam Zenati, Dimitri Meunier, Liyuan Xu, Arthur Gretton,
- Abstract summary: We study the problem of causal function estimation in the Proxy Causal Learning framework.<n>Two main approaches have been proposed: outcome bridge-based and treatment bridge-based methods.<n>We propose two kernel-based doubly robust estimators that combine the strengths of both approaches.
- Score: 27.890635192855846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of causal function estimation in the Proxy Causal Learning (PCL) framework, where confounders are not observed but proxies for the confounders are available. Two main approaches have been proposed: outcome bridge-based and treatment bridge-based methods. In this work, we propose two kernel-based doubly robust estimators that combine the strengths of both approaches, and naturally handle continuous and high-dimensional variables. Our identification strategy builds on a recent density ratio-free method for treatment bridge-based PCL; furthermore, in contrast to previous approaches, it does not require indicator functions or kernel smoothing over the treatment variable. These properties make it especially well-suited for continuous or high-dimensional treatments. By using kernel mean embeddings, we have closed-form solutions and strong consistency guarantees. Our estimators outperform existing methods on PCL benchmarks, including a prior doubly robust method that requires both kernel smoothing and density ratio estimation.
Related papers
- Robust and Computation-Aware Gaussian Processes [18.264598332579748]
We introduce Robust Computation-aware Gaussian Process (RCaGP), a novel GP model that combines a principled treatment of approximation-induced uncertainty with robust generalized Bayesian updating.<n>Our model ensures more conservative and reliable uncertainty estimates, a property we rigorously demonstrate.<n> Empirical results confirm that solving these challenges jointly leads to superior performance across both clean and outlier-contaminated settings.
arXiv Detail & Related papers (2025-05-27T12:49:14Z) - Density Ratio-based Proxy Causal Learning Without Density Ratios [26.49087216375106]
We address the setting of Proxy Causal Learning (PCL), which has the goal of estimating causal effects from observed data in the presence of hidden confounding.<n>Two approaches have been proposed to perform causal effect estimation given proxy variables.<n>We propose a practical and effective implementation of the second approach, which bypasses explicit density ratio estimation and is suitable for continuous and high-dimensional treatments.
arXiv Detail & Related papers (2025-03-11T12:27:54Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity [29.672383320615218]
This paper studies a new framework that unifies the three approaches and addresses the challenges above.<n>The new model reveals the trade-off between the unseen data and the specificity to the training data.<n>Experiments on various real-world tasks validate the superiority of the proposed learning framework.
arXiv Detail & Related papers (2023-01-31T11:33:18Z) - Deep Learning Methods for Proximal Inference via Maximum Moment
Restriction [0.0]
We introduce a flexible and scalable method based on a deep neural network to estimate causal effects in the presence of unmeasured confounding.
Our method achieves state of the art performance on two well-established proximal inference benchmarks.
arXiv Detail & Related papers (2022-05-19T19:51:42Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - A generalized framework for active learning reliability: survey and
benchmark [0.0]
We propose a modular framework to build on-the-fly efficient active learning strategies.
We devise 39 strategies for the solution of 20 reliability benchmark problems.
arXiv Detail & Related papers (2021-06-03T09:33:59Z) - Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment
Restriction [39.51144507601913]
We focus on the proximal causal learning setting, but our methods can be used to solve a wider class of inverse problems characterised by a Fredholm integral equation.
We provide consistency guarantees for each algorithm, and we demonstrate these approaches achieve competitive results on synthetic data and data simulating a real-world task.
arXiv Detail & Related papers (2021-05-10T17:52:48Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.