Deep Active Inference Agents for Delayed and Long-Horizon Environments
- URL: http://arxiv.org/abs/2505.19867v1
- Date: Mon, 26 May 2025 11:50:22 GMT
- Title: Deep Active Inference Agents for Delayed and Long-Horizon Environments
- Authors: Yavar Taheri Yeganeh, Mohsen Jafari, Andrea Matta,
- Abstract summary: AIF agents rely on accurate immediate predictions and exhaustive planning, a limitation that is exacerbated in delayed environments.<n>We propose a generative-policy architecture featuring a multi-step latent transition that lets the generative model predict an entire horizon in a single look-ahead.<n>We evaluate our agent in an environment that mimics a realistic industrial scenario with delayed and long-horizon settings.
- Score: 1.693200946453174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent success of world-model agents, which extend the core idea of model-based reinforcement learning by learning a differentiable model for sample-efficient control across diverse tasks, active inference (AIF) offers a complementary, neuroscience-grounded paradigm that unifies perception, learning, and action within a single probabilistic framework powered by a generative model. Despite this promise, practical AIF agents still rely on accurate immediate predictions and exhaustive planning, a limitation that is exacerbated in delayed environments requiring plans over long horizons, tens to hundreds of steps. Moreover, most existing agents are evaluated on robotic or vision benchmarks which, while natural for biological agents, fall short of real-world industrial complexity. We address these limitations with a generative-policy architecture featuring (i) a multi-step latent transition that lets the generative model predict an entire horizon in a single look-ahead, (ii) an integrated policy network that enables the transition and receives gradients of the expected free energy, (iii) an alternating optimization scheme that updates model and policy from a replay buffer, and (iv) a single gradient step that plans over long horizons, eliminating exhaustive planning from the control loop. We evaluate our agent in an environment that mimics a realistic industrial scenario with delayed and long-horizon settings. The empirical results confirm the effectiveness of the proposed approach, demonstrating the coupled world-model with the AIF formalism yields an end-to-end probabilistic controller capable of effective decision making in delayed, long-horizon settings without handcrafted rewards or expensive planning.
Related papers
- Reinforced Reasoning for Embodied Planning [18.40186665383579]
Embodied planning requires agents to make coherent multi-step decisions based on dynamic visual observations and natural language goals.<n>We introduce a reinforcement fine-tuning framework that brings R1-style reasoning enhancement into embodied planning.
arXiv Detail & Related papers (2025-05-28T07:21:37Z) - Unlocking Smarter Device Control: Foresighted Planning with a World Model-Driven Code Execution Approach [83.21177515180564]
We propose a framework that prioritizes natural language understanding and structured reasoning to enhance the agent's global understanding of the environment.<n>Our method outperforms previous approaches, particularly achieving a 44.4% relative improvement in task success rate.
arXiv Detail & Related papers (2025-05-22T09:08:47Z) - Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) is a modular approach consisting of a planner and inverse dynamics model.<n>By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data.<n>On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches.
arXiv Detail & Related papers (2025-04-23T17:53:34Z) - AI in a vat: Fundamental limits of efficient world modelling for agent sandboxing and interpretability [84.52205243353761]
Recent work proposes using world models to generate controlled virtual environments in which AI agents can be tested before deployment.<n>We investigate ways of simplifying world models that remain agnostic to the AI agent under evaluation.
arXiv Detail & Related papers (2025-04-06T20:35:44Z) - Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
Trajectory prediction and planning are essential for autonomous vehicles to navigate safely and efficiently in dynamic environments.<n>Recent diffusion-based generative models have shown promise in multi-agent trajectory generation, but their slow sampling is less suitable for high-frequency planning tasks.<n>We leverage the consistency model to build a predictive planner that samples from a joint distribution of ego and surrounding agents, conditioned on the ego vehicle's navigational goal.
arXiv Detail & Related papers (2025-02-12T00:26:01Z) - Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains.
While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges.
Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories.
arXiv Detail & Related papers (2024-08-02T18:07:53Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Goal-Directed Planning for Habituated Agents by Active Inference Using a
Variational Recurrent Neural Network [5.000272778136268]
This study shows that the predictive coding (PC) and active inference (AIF) frameworks can develop better generalization by learning a prior distribution in a low dimensional latent state space.
In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound.
Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data.
arXiv Detail & Related papers (2020-05-27T06:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.