Generalized and Personalized Federated Learning with Foundation Models via Orthogonal Transformations
- URL: http://arxiv.org/abs/2505.19888v2
- Date: Tue, 27 May 2025 03:22:47 GMT
- Title: Generalized and Personalized Federated Learning with Foundation Models via Orthogonal Transformations
- Authors: Eun Gyung Kong, Je Won Yeom, Yonghoon Jeon, Taesup Kim,
- Abstract summary: Federated Learning aims to train models across decentralized clients or devices holding local data without the need for centralized data collection.<n>We introduce FedOT, a novel approach that leverages black-box foundation models.<n>FedOT mitigates gradient conflicts across diverse clients, preserves semantic integrity, and achieves robust performance even in the presence of substantial data.
- Score: 4.008780119020479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) aims to train models across decentralized clients or devices holding local data without the need for centralized data collection, thus enhancing data privacy and security. However, achieving both generalization and personalization in heterogeneous settings remains a significant challenge. To address this, we introduce FedOT, a novel approach that leverages black-box foundation models. FedOT shares only a global task-dependent classifier across clients while locally adapting features through orthogonal transformations. By enforcing orthogonality, FedOT mitigates gradient conflicts across diverse clients, preserves semantic integrity, and achieves robust performance even in the presence of substantial data heterogeneity. The strategy of combining global and local parameters enables a more balanced approach for both generalization and personalization, outperforming baseline FL methods across multiple benchmarks. Furthermore, our extensive analysis confirms that joint optimization of global classifiers and local orthogonal transformations yields superior performance and suggests broader applicability.
Related papers
- FedHiP: Heterogeneity-Invariant Personalized Federated Learning Through Closed-Form Solutions [22.424881385529783]
We propose a Heterogeneity-invariant Personalized Federated learning scheme, named FedHiP, through analytical (i.e., closed-form) solutions to avoid gradient-based updates.<n>Our scheme incorporates three phases: analytic local training, analytic global aggregation, and analytic local personalization.<n>Experiments on benchmark datasets validate the superiority of our FedHiP scheme, outperforming the state-of-the-art baselines by at least 5.79%-20.97% in accuracy.
arXiv Detail & Related papers (2025-08-06T14:15:57Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT) is a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution.
This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance.
arXiv Detail & Related papers (2024-01-17T05:04:33Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.