UltraVSR: Achieving Ultra-Realistic Video Super-Resolution with Efficient One-Step Diffusion Space
- URL: http://arxiv.org/abs/2505.19958v1
- Date: Mon, 26 May 2025 13:19:27 GMT
- Title: UltraVSR: Achieving Ultra-Realistic Video Super-Resolution with Efficient One-Step Diffusion Space
- Authors: Yong Liu, Jinshan Pan, Yinchuan Li, Qingji Dong, Chao Zhu, Yu Guo, Fei Wang,
- Abstract summary: UltraVSR is a framework that enables ultra-realistic and temporal-coherent VSR.<n>DRS transforms denoising process into a single-step reconstruction from low-resolution to high-resolution videos.<n> RTS module is integrated into a pretrained text-to-image diffusion model.
- Score: 46.43409853027655
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have shown great potential in generating realistic image detail. However, adapting these models to video super-resolution (VSR) remains challenging due to their inherent stochasticity and lack of temporal modeling. In this paper, we propose UltraVSR, a novel framework that enables ultra-realistic and temporal-coherent VSR through an efficient one-step diffusion space. A central component of UltraVSR is the Degradation-aware Restoration Schedule (DRS), which estimates a degradation factor from the low-resolution input and transforms iterative denoising process into a single-step reconstruction from from low-resolution to high-resolution videos. This design eliminates randomness from diffusion noise and significantly speeds up inference. To ensure temporal consistency, we propose a lightweight yet effective Recurrent Temporal Shift (RTS) module, composed of an RTS-convolution unit and an RTS-attention unit. By partially shifting feature components along the temporal dimension, these two units collaboratively facilitate effective feature propagation, fusion, and alignment across neighboring frames, without relying on explicit temporal layers. The RTS module is integrated into a pretrained text-to-image diffusion model and is further enhanced through Spatio-temporal Joint Distillation (SJD), which improves temporal coherence while preserving realistic details. Additionally, we introduce a Temporally Asynchronous Inference (TAI) strategy to capture long-range temporal dependencies under limited memory constraints. Extensive experiments show that UltraVSR achieves state-of-the-art performance, both qualitatively and quantitatively, in a single sampling step.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution [68.77813885751308]
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information.<n>We propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data.<n>Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames.
arXiv Detail & Related papers (2025-06-13T07:59:52Z) - LiftVSR: Lifting Image Diffusion to Video Super-Resolution via Hybrid Temporal Modeling with Only 4$\ imes$RTX 4090s [16.456543112614586]
Diffusion models have advanced video super-resolution (VSR) by enhancing perceptual quality.<n>We propose LiftVSR, an efficient VSR framework that leverages and mitigates the image-wise diffusion prior to PixArt-$alpha$, achieving state-of-the-art results.<n>Experiments on several typical VSR benchmarks have demonstrated that LiftVSR achieves impressive performance with significantly lower computational costs.
arXiv Detail & Related papers (2025-06-10T07:49:33Z) - DC-VSR: Spatially and Temporally Consistent Video Super-Resolution with Video Diffusion Prior [13.324336907242195]
Video-resolution (VSR) aims to reconstruct a high-resolution (HR) video from a low-resolution (LR) counterpart.<n>DC-VSR produces spatially and temporally consistent VSR results with realistic textures.<n> experiments demonstrate that DC-VSR achieves spatially and temporally consistent high-quality VSR results, outperforming previous approaches.
arXiv Detail & Related papers (2025-02-05T10:15:00Z) - DiffVSR: Revealing an Effective Recipe for Taming Robust Video Super-Resolution Against Complex Degradations [25.756755602342942]
We present DiffVSR, featuring a Progressive Learning Strategy (PLS) that systematically decomposes this learning burden through staged training.<n>Our framework additionally incorporates an Interweaved Latent Transition (ILT) technique that maintains competitive temporal consistency without additional training overhead.
arXiv Detail & Related papers (2025-01-17T10:53:03Z) - Low-Light Video Enhancement via Spatial-Temporal Consistent Decomposition [52.89441679581216]
Low-Light Video Enhancement (LLVE) seeks to restore dynamic or static scenes plagued by severe invisibility and noise.<n>We present an innovative video decomposition strategy that incorporates view-independent and view-dependent components.<n>Our framework consistently outperforms existing methods, establishing a new SOTA performance.
arXiv Detail & Related papers (2024-05-24T15:56:40Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution [15.197746480157651]
We propose an effective real-world VSR algorithm by leveraging the strength of pre-trained latent diffusion models.
We exploit the temporal dynamics in LR videos to guide the diffusion process by optimizing the latent sampling path with a motion-guided loss.
The proposed motion-guided latent diffusion based VSR algorithm achieves significantly better perceptual quality than state-of-the-arts on real-world VSR benchmark datasets.
arXiv Detail & Related papers (2023-12-01T14:40:07Z) - Look Back and Forth: Video Super-Resolution with Explicit Temporal
Difference Modeling [105.69197687940505]
We propose to explore the role of explicit temporal difference modeling in both LR and HR space.
To further enhance the super-resolution result, not only spatial residual features are extracted, but the difference between consecutive frames in high-frequency domain is also computed.
arXiv Detail & Related papers (2022-04-14T17:07:33Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.