PAMD: Plausibility-Aware Motion Diffusion Model for Long Dance Generation
- URL: http://arxiv.org/abs/2505.20056v1
- Date: Mon, 26 May 2025 14:44:09 GMT
- Title: PAMD: Plausibility-Aware Motion Diffusion Model for Long Dance Generation
- Authors: Hongsong Wang, Yin Zhu, Qiuxia Lai, Yang Zhang, Guo-Sen Xie, Xin Geng,
- Abstract summary: Plausibility-Aware Motion Diffusion (PAMD) is a framework for generating dances that are both musically aligned and physically realistic.<n>To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG)<n>Experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions.
- Score: 51.2555550979386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational dance generation is crucial in many areas, such as art, human-computer interaction, virtual reality, and digital entertainment, particularly for generating coherent and expressive long dance sequences. Diffusion-based music-to-dance generation has made significant progress, yet existing methods still struggle to produce physically plausible motions. To address this, we propose Plausibility-Aware Motion Diffusion (PAMD), a framework for generating dances that are both musically aligned and physically realistic. The core of PAMD lies in the Plausible Motion Constraint (PMC), which leverages Neural Distance Fields (NDFs) to model the actual pose manifold and guide generated motions toward a physically valid pose manifold. To provide more effective guidance during generation, we incorporate Prior Motion Guidance (PMG), which uses standing poses as auxiliary conditions alongside music features. To further enhance realism for complex movements, we introduce the Motion Refinement with Foot-ground Contact (MRFC) module, which addresses foot-skating artifacts by bridging the gap between the optimization objective in linear joint position space and the data representation in nonlinear rotation space. Extensive experiments show that PAMD significantly improves musical alignment and enhances the physical plausibility of generated motions. This project page is available at: https://mucunzhuzhu.github.io/PAMD-page/.
Related papers
- MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation [10.203209816178552]
MotionRAG-Diff is a hybrid framework that integrates Retrieval-Augmented Generation and diffusion-based refinement.<n>Our method introduces three core innovations.<n>It achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy.
arXiv Detail & Related papers (2025-06-03T09:12:48Z) - VLIPP: Towards Physically Plausible Video Generation with Vision and Language Informed Physical Prior [88.51778468222766]
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos.<n>VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics.<n>We propose a novel two-stage image-to-video generation framework that explicitly incorporates physics with vision and language informed physical prior.
arXiv Detail & Related papers (2025-03-30T09:03:09Z) - X-Dancer: Expressive Music to Human Dance Video Generation [26.544761204917336]
X-Dancer is a novel zero-shot music-driven image animation pipeline.<n>It creates diverse and long-range lifelike human dance videos from a single static image.
arXiv Detail & Related papers (2025-02-24T18:47:54Z) - InterDance:Reactive 3D Dance Generation with Realistic Duet Interactions [67.37790144477503]
We propose InterDance, a large-scale duet dance dataset that significantly enhances motion quality, data scale, and the variety of dance genres.<n>We introduce a diffusion-based framework with an interaction refinement guidance strategy to optimize the realism of interactions progressively.
arXiv Detail & Related papers (2024-12-22T11:53:51Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.<n> SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.<n>Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - QEAN: Quaternion-Enhanced Attention Network for Visual Dance Generation [6.060426136203966]
We propose a Quaternion-Enhanced Attention Network (QEAN) for visual dance synthesis from a quaternion perspective.
First, SPE embeds position information into self-attention in a rotational manner, leading to better learning of features of movement sequences and audio sequences.
Second, QRA represents and fuses 3D motion features and audio features in the form of a series of quaternions, enabling the model to better learn the temporal coordination of music and dance.
arXiv Detail & Related papers (2024-03-18T09:58:43Z) - Bidirectional Autoregressive Diffusion Model for Dance Generation [26.449135437337034]
We propose a Bidirectional Autoregressive Diffusion Model (BADM) for music-to-dance generation.
A bidirectional encoder is built to enforce that the generated dance is harmonious in both the forward and backward directions.
To make the generated dance motion smoother, a local information decoder is built for local motion enhancement.
arXiv Detail & Related papers (2024-02-06T19:42:18Z) - LongDanceDiff: Long-term Dance Generation with Conditional Diffusion
Model [3.036230795326545]
LongDanceDiff is a conditional diffusion model for sequence-to-sequence long-term dance generation.
It addresses the challenges of temporal coherency and spatial constraint.
We also address common visual quality issues in dance generation, such as foot sliding and unsmooth motion.
arXiv Detail & Related papers (2023-08-23T06:37:41Z) - DiffDance: Cascaded Human Motion Diffusion Model for Dance Generation [89.50310360658791]
We present a novel cascaded motion diffusion model, DiffDance, designed for high-resolution, long-form dance generation.
This model comprises a music-to-dance diffusion model and a sequence super-resolution diffusion model.
We demonstrate that DiffDance is capable of generating realistic dance sequences that align effectively with the input music.
arXiv Detail & Related papers (2023-08-05T16:18:57Z) - BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis [123.73677487809418]
We introduce a new dataset aiming to challenge common assumptions in dance motion synthesis.
We focus on breakdancing which features acrobatic moves and tangled postures.
Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses.
arXiv Detail & Related papers (2022-07-20T18:03:54Z) - Learning to Generate Diverse Dance Motions with Transformer [67.43270523386185]
We introduce a complete system for dance motion synthesis.
A massive dance motion data set is created from YouTube videos.
A novel two-stream motion transformer generative model can generate motion sequences with high flexibility.
arXiv Detail & Related papers (2020-08-18T22:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.