TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos
- URL: http://arxiv.org/abs/2505.20124v1
- Date: Mon, 26 May 2025 15:24:06 GMT
- Title: TUNA: Comprehensive Fine-grained Temporal Understanding Evaluation on Dense Dynamic Videos
- Authors: Fanheng Kong, Jingyuan Zhang, Hongzhi Zhang, Shi Feng, Daling Wang, Linhao Yu, Xingguang Ji, Yu Tian, Qi Wang, Fuzheng Zhang,
- Abstract summary: We introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos.<n>Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria.<n>This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion.
- Score: 26.97196583891564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Videos are unique in their integration of temporal elements, including camera, scene, action, and attribute, along with their dynamic relationships over time. However, existing benchmarks for video understanding often treat these properties separately or narrowly focus on specific aspects, overlooking the holistic nature of video content. To address this, we introduce TUNA, a temporal-oriented benchmark for fine-grained understanding on dense dynamic videos, with two complementary tasks: captioning and QA. Our TUNA features diverse video scenarios and dynamics, assisted by interpretable and robust evaluation criteria. We evaluate several leading models on our benchmark, providing fine-grained performance assessments across various dimensions. This evaluation reveals key challenges in video temporal understanding, such as limited action description, inadequate multi-subject understanding, and insensitivity to camera motion, offering valuable insights for improving video understanding models. The data and code are available at https://friedrichor.github.io/projects/TUNA.
Related papers
- HV-MMBench: Benchmarking MLLMs for Human-Centric Video Understanding [79.06209664703258]
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos.<n>Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios.<n>We propose a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding.
arXiv Detail & Related papers (2025-07-07T11:52:24Z) - Video-CoT: A Comprehensive Dataset for Spatiotemporal Understanding of Videos Based on Chain-of-Thought [19.792159494513424]
Video comprehension is essential for various applications ranging from video analysis to interactive systems.<n>Despite advancements in vision-language models, these models often struggle to capture nuanced,temporal details.<n>To address this, we introduce Video-Thought, a groundbreaking dataset designed to enhance video understanding.
arXiv Detail & Related papers (2025-06-10T14:08:56Z) - SAMA: Towards Multi-Turn Referential Grounded Video Chat with Large Language Models [80.3895950009792]
Achieving fine-grained-temporal understanding in videos remains a major challenge for current Video Large Multimodels (Video LMMs)<n>We contribute in three core aspects: dataset, model, and benchmark.<n>First, we introduce SAMA-239K, a large-scale dataset comprising 15K videos specifically to enable joint learning of video understanding, grounding, and multi-turn video chat.<n>Second, we propose the SAMA model, which incorporates a versatile-temporal context aggregator and a Segment Model to jointly enhance fine-grained video comprehension and precise grounding capabilities.
arXiv Detail & Related papers (2025-05-24T18:13:16Z) - H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding [25.111988967973147]
Existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability.<n>We propose a hierarchical and holistic video understanding benchmark designed to evaluate both general video and online streaming video comprehension.<n>This benchmark contributes three key features: extended video duration, comprehensive assessment tasks, andEnriched video data.
arXiv Detail & Related papers (2025-03-31T12:32:51Z) - Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.<n>Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBench is a new benchmark dedicated to evaluating fine-grained temporal understanding in videos.
It consists of 10K video question-answer pairs, derived from 2K high-quality human annotations detailing the temporal dynamics in video clips.
Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)<n>We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.<n>We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
We present a novel dataset and benchmark, CinePile, specifically designed for authentic long-form video understanding.
Our comprehensive dataset comprises 305,000 multiple-choice questions (MCQs), covering various visual and multimodal aspects.
We fine-tuned open-source Video-LLMs on the training split and evaluated both open-source and proprietary video-centric LLMs on the test split of our dataset.
arXiv Detail & Related papers (2024-05-14T17:59:02Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
We present a novel hybrid dynAmic-static Context-aware attenTION NETwork (ACTION-NET) for action assessment in long videos.
We learn the video dynamic information but also focus on the static postures of the detected athletes in specific frames.
We combine the features of the two streams to regress the final video score, supervised by ground-truth scores given by experts.
arXiv Detail & Related papers (2020-08-13T15:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.