How to Improve the Robustness of Closed-Source Models on NLI
- URL: http://arxiv.org/abs/2505.20209v1
- Date: Mon, 26 May 2025 16:49:31 GMT
- Title: How to Improve the Robustness of Closed-Source Models on NLI
- Authors: Joe Stacey, Lisa Alazraki, Aran Ubhi, Beyza Ermis, Aaron Mueller, Marek Rei,
- Abstract summary: We investigate strategies to improve robustness of closed-source Large Language Models.<n>We find that the optimal strategy depends on the complexity of the data.<n>We find that large-scale closed-source autoregressive LLMs are substantially more robust than commonly used encoder models.
- Score: 20.00228502353912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Closed-source Large Language Models (LLMs) have become increasingly popular, with impressive performance across a wide range of natural language tasks. These models can be fine-tuned to further improve performance, but this often results in the models learning from dataset-specific heuristics that reduce their robustness on out-of-distribution (OOD) data. Existing methods to improve robustness either perform poorly, or are non-applicable to closed-source models because they assume access to model internals, or the ability to change the model's training procedure. In this work, we investigate strategies to improve the robustness of closed-source LLMs through data-centric methods that do not require access to model internals. We find that the optimal strategy depends on the complexity of the OOD data. For highly complex OOD datasets, upsampling more challenging training examples can improve robustness by up to 1.5%. For less complex OOD datasets, replacing a portion of the training set with LLM-generated examples can improve robustness by 3.7%. More broadly, we find that large-scale closed-source autoregressive LLMs are substantially more robust than commonly used encoder models, and are a more appropriate choice of baseline going forward.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach [65.6966065843227]
Iterative Reweight-then-IRO is a framework that performs RL-style alignment of a frozen base model without touching its parameters.<n>At test time, the value functions are used to guide the base model generation via a search-based optimization process.<n> Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT)
arXiv Detail & Related papers (2025-06-21T21:49:02Z) - Improving Model Alignment Through Collective Intelligence of Open-Source LLMS [34.23134719050941]
We introduce MoAA, that leverages the collective strengths of various language models to provide high-quality data for model alignment.<n> evaluation results show that our approach can improve win rate of LLaMA-3.1-8B-Instruct from 19.5 to 48.3 on Arena-Hard and from 22.33 to 57.23 on AlpacaEval2.
arXiv Detail & Related papers (2025-05-05T22:40:23Z) - DeepDistill: Enhancing LLM Reasoning Capabilities via Large-Scale Difficulty-Graded Data Training [16.441081996257576]
Large language models (LLMs) have recently achieved remarkable performance on various complex reasoning benchmarks.<n>We construct a large-scale, difficulty-graded reasoning dataset containing about 3.34 million unique queries of varying difficulty levels.<n>We significantly improve the reasoning capabilities of the base model, achieving a pass rate of 79.2% on the AIME2024 mathematical reasoning benchmark.
arXiv Detail & Related papers (2025-04-24T13:57:53Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
Existing robust benchmark datasets have two key limitations.<n>They generate only a limited range of perturbations for a single Information Extraction (IE) task.<n>Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench.<n>We show that training with only textbf15% of the data leads to an average textbf7.5% relative performance improvement across three IE tasks.
arXiv Detail & Related papers (2025-03-05T05:39:29Z) - iTool: Reinforced Fine-Tuning with Dynamic Deficiency Calibration for Advanced Tool Use [39.65877861652369]
Augmenting large language models with external tools is a promising approach to enhance their capabilities.<n>We show that training gains significantly decay as synthetic data increases.<n>We propose an iterative reinforced fine-tuning strategy designed to alleviate this limitation.
arXiv Detail & Related papers (2025-01-15T04:52:34Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.<n>This creates a barrier to fusing knowledge across individual models to yield a better single model.<n>We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
We show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods.
We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.
arXiv Detail & Related papers (2022-03-17T20:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.