ParticleGS: Particle-Based Dynamics Modeling of 3D Gaussians for Prior-free Motion Extrapolation
- URL: http://arxiv.org/abs/2505.20270v1
- Date: Mon, 26 May 2025 17:46:35 GMT
- Title: ParticleGS: Particle-Based Dynamics Modeling of 3D Gaussians for Prior-free Motion Extrapolation
- Authors: Jinsheng Quan, Chunshi Wang, Yawei Luo,
- Abstract summary: We propose a novel dynamic 3D Gaussian Splatting prior-free motion extrapolation framework based on particle dynamics systems.<n>Instead of simply fitting to the observed visual frame sequence, we aim to more effectively model the gaussian particle dynamics system.<n> Experimental results demonstrate that the proposed method achieves comparable rendering quality with existing approaches in reconstruction tasks.
- Score: 9.59448024784555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to model the dynamics of 3D Gaussians from visual observations to support temporal extrapolation. Existing dynamic 3D reconstruction methods often struggle to effectively learn underlying dynamics or rely heavily on manually defined physical priors, which limits their extrapolation capabilities. To address this issue, we propose a novel dynamic 3D Gaussian Splatting prior-free motion extrapolation framework based on particle dynamics systems. The core advantage of our method lies in its ability to learn differential equations that describe the dynamics of 3D Gaussians, and follow them during future frame extrapolation. Instead of simply fitting to the observed visual frame sequence, we aim to more effectively model the gaussian particle dynamics system. To this end, we introduce a dynamics latent state vector into the standard Gaussian kernel and design a dynamics latent space encoder to extract initial state. Subsequently, we introduce a Neural ODEs-based dynamics module that models the temporal evolution of Gaussian in dynamics latent space. Finally, a Gaussian kernel space decoder is used to decode latent state at the specific time step into the deformation. Experimental results demonstrate that the proposed method achieves comparable rendering quality with existing approaches in reconstruction tasks, and significantly outperforms them in future frame extrapolation. Our code is available at https://github.com/QuanJinSheng/ParticleGS.
Related papers
- Laplacian Analysis Meets Dynamics Modelling: Gaussian Splatting for 4D Reconstruction [9.911802466255653]
We propose a novel dynamic 3DGS framework with hybrid explicit-implicit functions.<n>Our method demonstrates state-of-the-art performance in reconstructing complex dynamic scenes, achieving better reconstruction fidelity.
arXiv Detail & Related papers (2025-08-07T01:39:29Z) - ODE-GS: Latent ODEs for Dynamic Scene Extrapolation with 3D Gaussian Splatting [10.497667917243852]
ODE-GS is a novel method that unifies 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to forecast dynamic 3D scenes.<n>Our results demonstrate that continuous-time latent dynamics are a powerful, practical route to prediction of complex 3D scenes.
arXiv Detail & Related papers (2025-06-05T18:02:30Z) - FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction [64.30050475414947]
FreeTimeGS is a novel 4D representation that allows Gaussian primitives to appear at arbitrary time and locations.<n>Our representation possesses the strong flexibility, thus improving the ability to model dynamic 3D scenes.<n> Experiments results on several datasets show that the rendering quality of our method outperforms recent methods by a large margin.
arXiv Detail & Related papers (2025-06-05T17:59:57Z) - Generating Full-field Evolution of Physical Dynamics from Irregular Sparse Observations [25.000578433018223]
We present Sequential DIffusion in Functional Tucker space, a novel framework that generates full-field evolution of physical dynamics from irregular sparse observations.<n>We demonstrate significant improvements in both reconstruction accuracy and computational efficiency compared to state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-14T11:09:15Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.<n>It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Gaussian Splatting Lucas-Kanade [0.11249583407496218]
We propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting.<n>By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation.<n>Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
arXiv Detail & Related papers (2024-07-16T01:50:43Z) - GaussianPrediction: Dynamic 3D Gaussian Prediction for Motion Extrapolation and Free View Synthesis [71.24791230358065]
We introduce a novel framework that empowers 3D Gaussian representations with dynamic scene modeling and future scenario synthesis.
GaussianPrediction can forecast future states from any viewpoint, using video observations of dynamic scenes.
Our framework shows outstanding performance on both synthetic and real-world datasets, demonstrating its efficacy in predicting and rendering future environments.
arXiv Detail & Related papers (2024-05-30T06:47:55Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis [16.733855781461802]
Implicit deformable representations commonly model motion with a canonical space and time-dependent deformation field.<n>GauFRe, uses a forward-warping deformation to explicitly model non-rigid transformations of scene geometry.<n>Experiments show our method achieves competitive results and higher efficiency than previous state-of-the-art NeRF and Gaussian-based methods.
arXiv Detail & Related papers (2023-12-18T18:59:03Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.