Generative AI in Computer Science Education: Accelerating Python Learning with ChatGPT
- URL: http://arxiv.org/abs/2505.20329v1
- Date: Sat, 24 May 2025 03:13:46 GMT
- Title: Generative AI in Computer Science Education: Accelerating Python Learning with ChatGPT
- Authors: Ian McCulloh, Pedro Rodriguez, Srivaths Kumar, Manu Gupta, Viplove Raj Sharma, Benjamin Johnson, Anthony N. Johnson,
- Abstract summary: This study evaluates the effectiveness of integrating generative AI, specifically OpenAIs ChatGPT, into a self-paced Python programming module within a sixteen-week professional training course on applied generative AI.
- Score: 1.1169959897721926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing demand for digital literacy and artificial intelligence (AI) fluency in the workforce has highlighted the need for scalable, efficient programming instruction. This study evaluates the effectiveness of integrating generative AI, specifically OpenAIs ChatGPT, into a self-paced Python programming module embedded within a sixteen-week professional training course on applied generative AI. A total of 86 adult learners with varying levels of programming experience completed asynchronous Python instruction in Weeks three and four, using ChatGPT to generate, interpret, and debug code. Python proficiency and general coding knowledge was assessed across 30 different assessments during the first 13 weeks of the course through timed, code-based evaluations. A mixed-design ANOVA revealed that learners without prior programming experience scored significantly lower than their peers on early assessments. However, following the completion of the accelerated Python instruction module, these group differences were no longer statistically significant,, indicating that the intervention effectively closed initial performance gaps and supported proficiency gains across all learner groups. These findings suggest that generative AI can support accelerated learning outcomes and reduce entry barriers for learners with no prior coding background. While ChatGPT effectively facilitated foundational skill acquisition, the study also highlights the importance of balancing AI assistance with opportunities for independent problem-solving. The results support the potential of AI-augmented instruction as a scalable model for reskilling in the digital economy.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Sakshm AI: Advancing AI-Assisted Coding Education for Engineering Students in India Through Socratic Tutoring and Comprehensive Feedback [1.9841192743072902]
Existing AI tools for programming education struggle with key challenges, including the lack of Socratic guidance.<n>This study examines 1170 registered participants, analyzing platform logs, engagement trends, and problem-solving behavior to assess Sakshm AI's impact.
arXiv Detail & Related papers (2025-03-16T12:13:29Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [176.39275404745098]
We evaluate whether two AI assistants, GPT-3.5 and GPT-4, can adequately answer assessment questions.<n>GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions.<n>Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
arXiv Detail & Related papers (2024-08-07T12:11:49Z) - Kattis vs. ChatGPT: Assessment and Evaluation of Programming Tasks in
the Age of Artificial Intelligence [0.0]
The effectiveness of using large language models for solving programming tasks has been underexplored.
The present study examines ChatGPT's ability to generate code solutions at different difficulty levels for introductory programming courses.
Results contribute to the ongoing debate on the utility of AI-powered tools in programming education.
arXiv Detail & Related papers (2023-12-02T11:09:17Z) - Student Mastery or AI Deception? Analyzing ChatGPT's Assessment
Proficiency and Evaluating Detection Strategies [1.633179643849375]
Generative AI systems such as ChatGPT have a disruptive effect on learning and assessment.
This work investigates the performance of ChatGPT by evaluating it across three courses.
arXiv Detail & Related papers (2023-11-27T20:10:13Z) - Implementing Learning Principles with a Personal AI Tutor: A Case Study [2.94944680995069]
This research demonstrates the ability of personal AI tutors to model human learning processes and effectively enhance academic performance.
By integrating AI tutors into their programs, educators can offer students personalized learning experiences grounded in the principles of learning sciences.
arXiv Detail & Related papers (2023-09-10T15:35:47Z) - Exploring the Use of ChatGPT as a Tool for Learning and Assessment in
Undergraduate Computer Science Curriculum: Opportunities and Challenges [0.3553493344868413]
This paper addresses the prospects and obstacles associated with utilizing ChatGPT as a tool for learning and assessment in undergraduate Computer Science curriculum.
Group B students were given access to ChatGPT and were encouraged to use it to help solve the programming challenges.
Results show that students using ChatGPT had an advantage in terms of earned scores, however there were inconsistencies and inaccuracies in the submitted code.
arXiv Detail & Related papers (2023-04-16T21:04:52Z) - Improving Code Generation by Training with Natural Language Feedback [69.52985513422381]
We formalize an algorithm for learning from natural language feedback at training time instead, which we call learning from Language Feedback (ILF)
ILF requires only a small amount of human-written feedback during training and does not require the same feedback at test time, making it both user-friendly and sample-efficient.
We use ILF to improve a Codegen-Mono 6.1B model's pass@1 rate by 38% relative (and 10% absolute) on the Mostly Basic Python Problems (MBPP) benchmark.
arXiv Detail & Related papers (2023-03-28T16:15:31Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and
Communicating the Uncertainty of AI [49.64037266892634]
We describe an open source Python toolkit named Uncertainty Quantification 360 (UQ360) for the uncertainty quantification of AI models.
The goal of this toolkit is twofold: first, to provide a broad range of capabilities to streamline as well as foster the common practices of quantifying, evaluating, improving, and communicating uncertainty in the AI application development lifecycle; second, to encourage further exploration of UQ's connections to other pillars of trustworthy AI.
arXiv Detail & Related papers (2021-06-02T18:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.