Towards Emotionally Consistent Text-Based Speech Editing: Introducing EmoCorrector and The ECD-TSE Dataset
- URL: http://arxiv.org/abs/2505.20341v1
- Date: Sat, 24 May 2025 16:10:56 GMT
- Title: Towards Emotionally Consistent Text-Based Speech Editing: Introducing EmoCorrector and The ECD-TSE Dataset
- Authors: Rui Liu, Pu Gao, Jiatian Xi, Berrak Sisman, Carlos Busso, Haizhou Li,
- Abstract summary: EmoCorrector is a novel post-correction scheme for text-based speech editing.<n>It retrieves the edited text's emotional features, retrieving speech samples with matching emotions, and synthesizing speech that aligns with the desired emotion.<n>EmoCorrector significantly enhances the expression of intended emotion while addressing emotion inconsistency limitations in current TSE methods.
- Score: 52.95197015472105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-based speech editing (TSE) modifies speech using only text, eliminating re-recording. However, existing TSE methods, mainly focus on the content accuracy and acoustic consistency of synthetic speech segments, and often overlook the emotional shifts or inconsistency issues introduced by text changes. To address this issue, we propose EmoCorrector, a novel post-correction scheme for TSE. EmoCorrector leverages Retrieval-Augmented Generation (RAG) by extracting the edited text's emotional features, retrieving speech samples with matching emotions, and synthesizing speech that aligns with the desired emotion while preserving the speaker's identity and quality. To support the training and evaluation of emotional consistency modeling in TSE, we pioneer the benchmarking Emotion Correction Dataset for TSE (ECD-TSE). The prominent aspect of ECD-TSE is its inclusion of $<$text, speech$>$ paired data featuring diverse text variations and a range of emotional expressions. Subjective and objective experiments and comprehensive analysis on ECD-TSE confirm that EmoCorrector significantly enhances the expression of intended emotion while addressing emotion inconsistency limitations in current TSE methods. Code and audio examples are available at https://github.com/AI-S2-Lab/EmoCorrector.
Related papers
- Emotional Dimension Control in Language Model-Based Text-to-Speech: Spanning a Broad Spectrum of Human Emotions [37.075331767703986]
Current emotional text-to-speech systems face challenges in conveying the full spectrum of human emotions.<n>This paper introduces a TTS framework that provides flexible user control over three emotional dimensions - pleasure, arousal, and dominance.
arXiv Detail & Related papers (2024-09-25T07:16:16Z) - UMETTS: A Unified Framework for Emotional Text-to-Speech Synthesis with Multimodal Prompts [64.02363948840333]
UMETTS is a novel framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech.<n>EP-Align employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information.<n>EMI-TTS integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions.
arXiv Detail & Related papers (2024-04-29T03:19:39Z) - DurFlex-EVC: Duration-Flexible Emotional Voice Conversion Leveraging Discrete Representations without Text Alignment [34.19748360507656]
DurFlex-EVC is a duration-flexible EVC framework that operates without the need for text or alignment information.<n>We introduce a unit aligner that models contextual information by aligning speech with discrete units representing content, eliminating the need for text or speech-text alignment.<n>We also design a style autoencoder that effectively disentangles content and emotional style, allowing precise manipulation of the emotional characteristics of the speech.
arXiv Detail & Related papers (2024-01-16T03:39:35Z) - ZET-Speech: Zero-shot adaptive Emotion-controllable Text-to-Speech
Synthesis with Diffusion and Style-based Models [83.07390037152963]
ZET-Speech is a zero-shot adaptive emotion-controllable TTS model.
It allows users to synthesize any speaker's emotional speech using only a short, neutral speech segment and the target emotion label.
Experimental results demonstrate that ZET-Speech successfully synthesizes natural and emotional speech with the desired emotion for both seen and unseen speakers.
arXiv Detail & Related papers (2023-05-23T08:52:00Z) - Contextual Expressive Text-to-Speech [25.050361896378533]
We introduce a new task setting, Contextual Text-to-speech (CTTS)
The main idea of CTTS is that how a person speaks depends on the particular context she is in, where the context can typically be represented as text.
We construct a synthetic dataset and develop an effective framework to generate high-quality expressive speech based on the given context.
arXiv Detail & Related papers (2022-11-26T12:06:21Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
Emotional voice conversion aims to change the emotional state of an utterance while preserving the linguistic content and speaker identity.
We propose a novel 2-stage training strategy for sequence-to-sequence emotional voice conversion with a limited amount of emotional speech data.
The proposed framework can perform both spectrum and prosody conversion and achieves significant improvement over the state-of-the-art baselines in both objective and subjective evaluation.
arXiv Detail & Related papers (2021-03-31T04:56:14Z) - Seen and Unseen emotional style transfer for voice conversion with a new
emotional speech dataset [84.53659233967225]
Emotional voice conversion aims to transform emotional prosody in speech while preserving the linguistic content and speaker identity.
We propose a novel framework based on variational auto-encoding Wasserstein generative adversarial network (VAW-GAN)
We show that the proposed framework achieves remarkable performance by consistently outperforming the baseline framework.
arXiv Detail & Related papers (2020-10-28T07:16:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.