Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
- URL: http://arxiv.org/abs/2505.20697v3
- Date: Wed, 02 Jul 2025 20:42:02 GMT
- Title: Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
- Authors: Zachary C. Brown, David Carlson,
- Abstract summary: We propose a novel method to generate scientific hypotheses from complex datasets.<n>Our method improves f1-scores of predicted dynamic causal patterns by roughly 22-28% on average over baselines.<n>A case study on real brain data demonstrates our method's ability to uncover relationships linked to specific behavioral states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of hypothesis generation promises to reduce costs in neuroscience by narrowing the range of interventional studies needed to study various phenomena. Existing machine learning methods can generate scientific hypotheses from complex datasets, but many approaches assume causal relationships are static over time, limiting their applicability to systems with dynamic, state-dependent behavior, such as the brain. While some techniques attempt dynamic causal discovery through factor models, they often restrict relationships to linear patterns or impose other simplifying assumptions. We propose a novel method that models dynamic graphs as a conditionally weighted superposition of static graphs, where each static graph can capture nonlinear relationships. This approach enables the detection of complex, time-varying interactions between variables beyond linear limitations. Our method improves f1-scores of predicted dynamic causal patterns by roughly 22-28% on average over baselines in some of our experiments, with some improvements reaching well over 60%. A case study on real brain data demonstrates our method's ability to uncover relationships linked to specific behavioral states, offering valuable insights into neural dynamics.
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - Dynamic Causal Structure Discovery and Causal Effect Estimation [5.943525863330208]
We develop a new framework to model the dynamic causal graph where the causal relations are allowed to be time-varying.<n>We propose an algorithm that could provide both past-time estimates and future-time predictions on the causal graphs.
arXiv Detail & Related papers (2025-01-11T12:52:39Z) - BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
We propose BLEND, a behavior-guided neural population dynamics modeling framework via privileged knowledge distillation.<n>By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs.<n>A student model is then distilled using only neural activity.
arXiv Detail & Related papers (2024-10-02T12:45:59Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Network Estimators [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.<n>Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Is the brain macroscopically linear? A system identification of resting
state dynamics [7.312557272609717]
A central challenge in the computational modeling of neural dynamics is the trade-off between accuracy and simplicity.
We provide a rigorous and data-driven investigation of this hypothesis at the level of whole-brain blood-oxygen-level-dependent (BOLD) and macroscopic field potential dynamics.
Our results can greatly facilitate our understanding of macroscopic neural dynamics and the principled design of model-based interventions for the treatment of neuropsychiatric disorders.
arXiv Detail & Related papers (2020-12-22T20:51:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.