Beyond Templates: Dynamic Adaptation of Reasoning Demonstrations via Feasibility-Aware Exploration
- URL: http://arxiv.org/abs/2505.20700v1
- Date: Tue, 27 May 2025 04:08:11 GMT
- Title: Beyond Templates: Dynamic Adaptation of Reasoning Demonstrations via Feasibility-Aware Exploration
- Authors: Yong Wu, Weihang Pan, Ke Li, Chen Binhui, Ping Li, Binbin Lin,
- Abstract summary: We introduce Dynamic Adaptation of Reasoning Trajectories (DART), a novel data adaptation framework.<n>Instead of uniformly imitating expert steps, DART employs a selective imitation strategy guided by step-wise adaptability estimation.<n>We validate DART across multiple reasoning benchmarks and model scales, demonstrating that it significantly improves generalization and data efficiency.
- Score: 15.711365331854614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable reasoning capabilities, yet aligning such abilities to small language models (SLMs) remains a challenge due to distributional mismatches and limited model capacity. Existing reasoning datasets, typically designed for powerful LLMs, often lead to degraded performance when directly applied to weaker models. In this work, we introduce Dynamic Adaptation of Reasoning Trajectories (DART), a novel data adaptation framework that bridges the capability gap between expert reasoning trajectories and diverse SLMs. Instead of uniformly imitating expert steps, DART employs a selective imitation strategy guided by step-wise adaptability estimation via solution simulation. When expert steps surpass the student's capacity -- signaled by an Imitation Gap -- the student autonomously explores alternative reasoning paths, constrained by outcome consistency. We validate DART across multiple reasoning benchmarks and model scales, demonstrating that it significantly improves generalization and data efficiency over static fine-tuning. Our method enhances supervision quality by aligning training signals with the student's reasoning capabilities, offering a scalable solution for reasoning alignment in resource-constrained models.
Related papers
- Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - Learn to Think: Bootstrapping LLM Reasoning Capability Through Graph Representation Learning [19.75678229122211]
Large Language Models (LLMs) have achieved remarkable success across various domains.<n>They still face significant challenges, including high computational costs for training and limitations in solving complex reasoning problems.<n>We propose a novel framework that leverages graph learning to enable more flexible and adaptive reasoning capabilities.
arXiv Detail & Related papers (2025-05-09T02:51:22Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
Large Language Models (LLMs) have become indispensable across academia, industry, and daily applications.<n>One core challenge of evaluation in the large language model (LLM) era is the generalization issue.<n>We propose Model Utilization Index (MUI), a mechanism interpretability enhanced metric that complements traditional performance scores.
arXiv Detail & Related papers (2025-04-10T04:09:47Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
We propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context.<n>Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage.<n>Experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations.
arXiv Detail & Related papers (2025-02-25T03:03:35Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.<n>We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.<n>Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking.<n>LLMs struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries.<n>This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data.
arXiv Detail & Related papers (2024-12-31T04:50:15Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
We propose the Deductive and InDuctive(DID) method to enhance Large Language Models (LLMs) reasoning.<n>DID implements a dual-metric complexity evaluation system that combines Littlestone dimension and information entropy.<n>Our results demonstrate significant improvements in reasoning quality and solution accuracy.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Wait, that's not an option: LLMs Robustness with Incorrect Multiple-Choice Options [2.1184929769291294]
This work introduces a novel framework for evaluating LLMs' capacity to balance instruction-following with critical reasoning.<n>We show that post-training aligned models often default to selecting invalid options, while base models exhibit improved refusal capabilities that scale with model size.<n>We additionally conduct a parallel human study showing similar instruction-following biases, with implications for how these biases may propagate through human feedback datasets used in alignment.
arXiv Detail & Related papers (2024-08-27T19:27:43Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT)
We propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities.
Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios.
arXiv Detail & Related papers (2024-05-01T09:10:27Z) - Discriminator-Guided Model-Based Offline Imitation Learning [11.856949845359853]
offline imitation learning (IL) is a powerful method to solve decision-making problems from expert demonstrations without reward labels.
We propose the Discriminator-guided Model-based offline Learning (DMIL) framework, which introduces a discriminator to simultaneously distinguish the dynamics correctness and suboptimality of model rollout data.
Experimental results show that DMIL and its extension achieve superior performance and robustness compared to state-of-the-art offline IL methods under small datasets.
arXiv Detail & Related papers (2022-07-01T07:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.